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CONVERGENCE OF LOCALLY DIVERGENCE-FREE
DISCONTINUOUS-GALERKIN METHODS FOR THE INDUCTION EQUATIONS
OF THE 2D-MHD SYSTEM *

NicoLASs BESSE! AND DIETMAR KRONER2

Abstract. We present the convergence analysis of locally divergence-free discontinuous Galerkin
methods for the induction equations which appear in the ideal magnetohydrodynamic system. When
we use a second order Runge Kutta time discretization, under the CFL condition At ~ h/ 3 we obtain
error estimates in L? of order O(At? + h™+1/2) where m is the degree of the local polynomials.
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1. INTRODUCTION

The magnetohydrodynamic (MHD) equations modelize electrically conducting fluid flow in which the elec-
tromagnetic forces can be of the same order or even greater than hydrodynamic ones. The ideal MHD system
which combines the equations of gas dynamics with Maxwell equations in which relativistic, viscous and resistive
effects are neglected can be written in the following three dimensional conservative form

Ohp+V-(pu) =

O (pu) + V- (pu@u+ (p+ 5/B[*) T - B®B)
B+V-(u@B-B®u) =
di(pe) + V- ((pe+p+ 5/B*)u—B(u-B)) =
V-B
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momentum conservation)

energy conservation)

o O O O O

(
(
(induction equation)
(
(

divergence constraint)

where p is the density, u the velocity field, B the magnetic field, p the pressure, e the total energy and Z identity
matrix. If the initial data are divergence free, that is to say that V - By = 0, then an exact solution will satisfy
this constraint for all the times. For smooth solution this is obvious because the induction equation can be
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rewritten as ;B + curl(B x u) = 0 and we have the identity V- (V x -) = 0. The numerical preservation of the
V - B = 0 condition is an important and much debated problem for numerical MHD codes [3,4,10-12,21,23].
Because V - B errors arise in numerical simulations and may increase in time, numerical instabilities can appear
and lead to unphysical behaviour of the system. For example numerically incorrect magnetic field topologies lead
to unphysical plasma transport orthogonal to the magnetic field. The non enforcement of the V - B constraint
leads to the loss of momentum and energy conservation and allows fictitious forces to develop parallel to the
magnetic field. These effects are discussed in [3,4].

In this paper we present the convergence analysis and error estimates of locally divergence-free Runge Kutta
discontinuous Galerkin schemes for smooth solutions of the two dimensional induction equation which arises in
the MHD system

B
68_75 +curl(B xu) =0 (1)

where B = (B,(t,x), By(t,x)) is the magnetic field, and u = (uy(¢,x), u, (¢, x)) is the velocity field, with the
notations x = (x,y). We assume for this paper that the velocity field u is given.

The construction and the convergence analysis of this discontinuous Galerkin method rest on three ingredients.
First we rewrite the induction equation as a Friedrichs system. Then we write a discontinuous Galerkin formula-
tion of this new system in which we choose upwind flux as definition of the flux at the cell interface. In order to
have a locally divergence free scheme we use piecewise solenoidal functions that are totally discontinuous across
interface cells but which are pointwise divergence free on each element. This basis functions were developed in
[2,17] in the context of nonconforming finite element method for the stationary Navier-Stokes equations and
were also used in [18]. We also use the Nedelec finite element in H(curl) [20] in two dimensions which is obtained
by rotating the Raviart-Thomas element [22] by 7/2. Then we used the framework developed in [6,26] to show
the convergence and obtained error estimates for our scheme. In [7] the authors develop a locally divergence free
discontinuous Galerkin scheme for numerically solving the Maxwell equation. They also show an error estimate
of the form O(h*+1/2) where k is the degree of the local polynomials for a scheme semi-discretized in space only.

2. THE NUMERICAL SCHEME

2.1. The Friedrichs formulation

Thanks to the divergence constraint, V - B = 0, the induction equation (1) can be rewritten as the following
Friedrichs system:

OB  9(A.B)  9(A,B) P
o + o + 9y +CB=0 in Qx][0,T], (2)
where (t, ) (t,x)
Uy t;X 0 _ u t’X 0
Ax(t7x) = ( 0 uz(t,x) ) ) -Ay(t,X) = ( v 0 uy(t,x) ) )
and

e =- () e

x Uy, y Uyl

Sometimes we will use the notation (v1, v2) instead of (v,, v,) where v is a vector or matrix fields. For suitable
boundary conditions on 9 Friedrichs [14] has proved the existence and uniqueness in L?({) of a weak and
strong solution to (2), under appropriate smoothness conditions and the additional assumption

6A1~+6_Ayzaz7 in Q, (3)

c+ct
e Ox oy

with « a strictly positive constant. We suppose that u € L*>(0,T;€>°(Q)), V-u € L>(0,T;L>(Q)) and
C € L>=(0,T;6°°(2)). We recall that if By € H*(R?) with s € R, then the system (2) admits a unique weak
solution B € ¢ ([0, +o0o[; H*(R?)) N6 ([0, +oo[; H*~1(R?)) (see [1]). In particular, if s > 2 the weak solution
lies in ¢! ([0, +00[xR?) and is in fact a classical solution.
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Remark 1. The condition (3) can be easily satisfied by using B(t,x) = e *B(t,x), with A > 0 instead of B.

Then B satisfies ~ ~ _
0B 0(A.B)  0(A4,B) 5= .
— B= Q T 4
BN + O + By +C 0 in Qx][0,T7], (4)
where C = C + X Z. Since we assume Vu € L>(Q) we can choose A sufficiently large such that condition (3) is

satisfied for (4).

2.2. The approximation spaces

First we introduce the space ¢*°(0,T; X) defined by

>(0,T; X) = {f:{to,-u,tNT}HXl [ flle=0,75) = | max IIf(t")||x<<>O}

ISnSNT

where X denotes a functional space. For a subdomain D C ©, H™(D) denotes the usual Sobolev space which
is a Hilbert space with the inner product (u,v);, p = Z\a|§m Jp 0*ud®vdx, wu,v € H™(D) and the square

of seminorm |v %,,,L(D) = |aj=m In |8v|? . Then we define the space H™(D) = (H™(D))? with inner product

(V,W)mp = Zle(vi,wi)mﬁp, and the solenoidal vector fields S™(D) = {ve H™(D)| V-v=0in D},
m > 1. Let 7}, a family of partitions of 2 that possesses properties described in [2,17]. For integer k& > 0,
P¥(D) will denote the linear space of polynomials in two variables, of degree less than or equal to & on D. Then

we define P*(D) = (P*(D))” and V*(D) = {v eP¥(D) | V-v=0in D} . We have V¥(D) ¢ $™(D) for all
m > 1. For k > 0 we define V;¥(Q) = ke, VE(K) where K is a finite element (or cell) and N the number

of finite elements. The way of constructing local bases for V* and hence for th are described in [2,17]. For
example, for kK = 1 the bases functions can be constructed using the set of functions

1 1 0 Y 0 x
- o)\ 1)\ o0 )\ z )\ —y ’
To obtain a basis function for k = 2 it suffices to augment the above set by
-2 y? 0 x? —2zy
- - 0 ) 1,2 ) 721‘y ’ y2 .

Then we see that the basis functions for the approximation space th can be constructed by adding suitable
terms to thfl.

[1]

Remark 2. In the case where 7, is a triangulation in R? the spaces V*(K) are equivalent to the spaces RT?(K)
defined by RT(K) = {v € RT\(K) | div v = 0}, where RT}(K) is the usual Raviart-Thomas space on K used
to approximate H(div). In fact each element of V¥(K) or RTP(K) is constructed as the curl of a stream function
which belongs to P*(K) and the dimension of the both space is equal to dim (P*(K) —1) = (k + 1)(k +4)/2.

The spaces V;* possess optimal approximation properties in relation to the spaces S™ () which has been
proved in [2]. We recall some of those.

Theorem 1. Let m > 0. If v.e H" " (K), then there exists x € P™(K) such that
v =Xl (k) < ChrKn+17j|V|Hm+1(K); 0<j<m+1

where hy is the diameter of the largest ball contained in the cell K.
Letm > 0. If ve S"(K), then there exists x € V™(K) such that

IV = Xl ey < ChET 7 Wlmmon ey, 05 <mt 1. (5)
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Proof. See [2]. O

Now we define the local L? projection operator 7, from S™(f2) onto Vi¥(Q), with m > 1 by the equations
T = ZKGT)E 7TK]1K(X) and

/(va—v)-cpzo, Vo € VH(K), VK € T,,. (6)
K

where 1k (x) denotes the characteristic functions of K which is equal to 1 on K and 0 elsewhere. Thanks to
the properties of the partition 7}, (see [2]) there exists a constant o such that hx < oh, VK € 7},. For example
we can take h = minge7, hx. Then we have the following approximation result.
Theorem 2. Let Tj, be a partition of Q satisfying the properties assumed in [2], i.e.
1) UKE'T;L?:§7 KHQ:®7 K7Q€7—h7 K#Q
il) 3 p1 a constant independent of N and K € Ty, such that px < p1hx where px is the diameter of the
smallest ball containing K.
ili) 3 po a constant independent of N and K € T, such that hq < popx whenever Q and K have a common
1-dimensional interface.
iv) K is a regular domain in R?, i.e. the divergence theorem holds on K.

If v.e S™L(Q) then there exists a constant C such that
70V = Vllga (o) < CA™V]Ems(q). (7)

Moreover we have the following inverse inequalities

C C
[Vhla (k) < E”V}zHL?(K)a [VilL2 o) < mlthHm(K)’ Vv, € V'(K) (8)
and the following approximation result
||7ThV - VHHS(K) < Chm+175|V|Hm+l(K), Vv € Serl(Q) ENS IRJF, s<m+1. (9)

Proof. See Appendix 5. O

Now we introduce another discontinuous interpolation operator II; based on the two-dimensional Nédélec
element in H(curl) (see [20]). Let Pj denote the space of homogeneous polynomials of degree k in R? and con-
sider the following subspace of P¥, R, = P*~1¢ S}, where Sy, is defined by Sj, = {p€ If’k; p(x)-x =0, for all
x = (1, 22)}. Then we define W"(K) = {v € Ry(K)} and W} (Q) = [[er, WF(K). Following [15], if we define
the two sets of moments of v € H* with s > 1/2 on K: Mc(v) = {[ (vxwv.) ¢dl' Vg€ P* !(e) for all edges e
of K} where v, is the outward unit normal to the edges e of K, and Mg (v) = {fK v-qdx, Vqe ]Pk_Q(K)} ,

then a vector field v of Ry, is entirely determined in a triangle K by its two sets of moments: M. (v), Mg (v).
Moreover the tangential components of v on a given edge e of K depend only the moments M, (v) defined on
that edges. Besides we have the following approximation properties (see [15,20]):

Lemma 1. Let v € H™(curl;QY), then there exists a constant C independent of h such that

v — HhVHL2(K) < Ch™ |V|Hm(K) (10)

HV - Hhv”H(cu’!‘l;K) < Ch™ (|V

Hm () T | curl V|H7"(K)) (11)
and
[(v —IIv) X ve|

He(e) <COp™E |V|Hm(e) 5 Vee 0K s<m (]_2)
with v, = Hxv where v € W (K) is determined by Mg (llxgv —v) = {0}, and M (Igv —v) = {0}.
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If m =1 then Ry = P& S, where S; = span(z+) and then it is obvious that div Ry = 0. Then the
vector fields of R4 is divergence free. Unfortunately the spaces Ry with & > 1 are not divergence free spaces.
Now we present a trace result and a continuous embedding which will be useful later. Let K a convex polygon
with Lipschitz boundary in R2. First we define the space V(K) and W(K) by W(K) = {v € H(curl; K)N
H(div; K), v x v € L?(0K)} equipped with the norm VI = IVIp2(ry + llewrl vilpe gy + 1div vl g2 gy +
v xvli20r) and V(K) = {ve€H(curK)NH(div;K), v-ve L*(0K)} equipped with the norm
IVllvcrey = VI 2y Fllcurl [ po g+l div VHLQE()—FHV V| 120K - It is proved in [8,9] that V(K) = W(K) and
then that the mapping v — 4ov defined on 2(K) has a unique linear continuous extension as an operator from

W(K) onto L?(0K), where v is the boundary values of v on OK. Now let wus define
QK) = {veH(cwLK)nH(iv;K), vxv.€eHY%e) VecdK} equipped with the norm
IVlloy = IVllp2exey + llearl vl gz ey + 1div Vi g2y + 2ccor IV X Vellgisz() - Then we have the following

theorem where a proof can be found in [13]

Theorem 3. Let K be a convex polygon in R? with Lipschitz boundary. Then we have the continuous embedding:
Q(K) — H'(K). (13)

2.3. The discontinuous Galerkin method

In this section we describe our discontinuous Galerkin method. If we take the scalar product of the equa-
tion (1) with a test function ¢, integrate the scalar product on a cell K and use the following Green formula

/ vaiwdx:f/ wo;vdx + Z /wvl/ xdl (14)
K

e€COK

where v k = (V) i, V2 )" = (VY g, z/i”K)T denotes the outward unit normal to the face e of K, we obtain

(/B <pdx) Z/AB acpdx—l—zz /AB <pueKdF+/CB @dx = 0. (15)

i=1 ecOK

Now we replace respectively B and ¢ by By, and ¢, in (15) where By, ¢, € V/F(2). Nevertheless the
terms arising from the boundary of the cell K in (15) are not well defined or have no sense since B, and
¢, are discontinuous on the boundary 0K of the element K. Then we replace these terms by a numerical
upwind flux that we are going to define in the following lines. Let us define A, x (¢, x) = Zle(.Ai)‘eué x and
Cex(t,x) = —(Ae,x(t,%))7, Dei(t,x) = (Ae,k(t,%x))" where A~ and AT denote respectively the negative

and the positive part of A. Then we define the upwind numerical flux g(ve x,v,w) = —Ce gW + D¢ gV.
By noting that |[A] = AT — A~ and A = AT + A~ we can rewrite g(ve k,v,w) as the Lax-Friedrichs flux
g(Ve i, V,W) = AeyKLQW) | A, |—) where v (resp. w) denotes the interior (resp. exterior) value of the

solution from the cell K. Now we obtain the following semi-discretized scheme in space

o (/ B;l-gohdx)— /ABh 0<phdx+z Z/ (Ve.xt,Br, B, ) - KdI‘-l—/CBh-cphdx:O
K K

i=1ecOK

for all ¢, € V}F where K. is the neighbourhood of K along the face e. Let T be the final time and At = T//Nr
the time step. Now we use a second order Runge-Kutta scheme for the discretization in time. Then the fully
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discretized scheme reads

[ Yo = [ Biooudxr AFRBlL) (16)
n+1 1 n 1 n At n—+1
B, ppdx = P §Yh ppdx + —7: (Y, en) (17)
K K
where
FL(W, ) / ATW™ 0<phdx+z > / e prdl — / C"W" -, dx
i=1 ccOK K
with ( ) (
0 (W) = 0" (vese. Wie, Wi ) = AL e el g (00 000 (18)
and A7 g = Ak (1", %), C" = C(t",x). Let X* be V¥ or Wk, If we expand B, and ¢,,, that is to say
dim(x*) _ dim(xk) _
= > Bi(®)Ix(x), Bi(x)= Y og"¥i(x), Y= > 0V
KET, i=1 i=1
with ¥; € X*, then we obtain the scheme
Ox]" = [Ex]"+AtLg([En]")
1
B = S (k)" +[Ok]") + ALLE ([04]")
n 1n dim (X%),n r n 1,n card(7;,)dim(X*),n T ; ; k
where [Yg]" = (UK’ N ) , [2R]™ = (a moL ordtn , ) and for all ¢ € {1, ..., dim(X")}
2 dlm(x )
5 (), = /A" )+ (M), 0 ()
l 1 mj 1

with (Mg). -—fK U (x)dx.

3. ANALYSIS OF THE SEMI-DISCRETIZED SCHEME IN SPACE

In this section we show the L?-stability, the convergence and present some error estimates for the semi-
discretized scheme in space, continuous in time.

Theorem 4. Let u and By sufficiently, regular, typically we consider that u € L™ ([O, +oof; Wl"’o(IRQ)) and
By € H™ ™ (R?) then there exists a constant C' = C(||Vul| L= (jo,r)x0), T) independent of h such that

IBrll 20,7512 () < ClIB#(0)]|L2(0),
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where By (0) € V;™ or By (0) € W™ with m = 1. Let [By]e be the jump of By, across an edge e of &, the set of
all the edges of the partition Tp, then, there exists a constant C = C(||Vul|pe(j0,11x0), T 1Bl (0,71 +1(R2)))
independent of h such that

T
B Bullsormeon+| [ 3 [ MAlBal. - [Bel.ards < e
0

ec&y €

wheren:% if B, € V" andn = —% if Bp, € W) with m = 1.

Proof. The stability result is proved in the Appendix 5. We will show simultaneously the convergence of the
scheme and derivate some error estimates. First we begin to derivate estimates which are valid as well for
B, € V;™ than By, € W}l. Then we continue the proof by distinguishing the case where B;, € V;™ and the case
where By, € W}, First by noting that

Ly(Bn,e,) =0 and Ly(B,p,) =0 Ve, € VV(Q) or Y, € WHQ)

then
Li(en,n) =0, Yo, € V;(Q) or Ve, € Wi(Q) (19)
where e, = B — By,. By noting that 7,Bj, = By, and we, — e, = 1, (B — Bp,) — (B — By,), then using (19) we
obtain
Ly(mhen, mhen) = Ly(Then —en, mhen) = Ln(m,B — B, mhep). (20)
From the stability analysis done in Appendix 5 the left hand side of (20) is the expression

1 1 1 [T
Ly (then, mhen) = §||7Theh(T)||i2(Q) — §H7rheh(0)|\%z(9) +3 / > [ 1Acl[mnen]e - [mhen]edldt
0 ec&y €

T T
1
+/ /theh-ﬁhehdxdtJr—/ /V-u||7rheh|\§dxdt. (21)
o Jo 2Jo Ja

Now it remains to estimate the right hand side of (20) that is to say find an estimate for
Lu(mB —B,gy,), Y, € V" (Q) or Y, € W, ().

Let us decompose Ly (m,B — B, ¢;,) in several terms which will be estimated in the sequel.

T
ﬁh(ﬂ'hB — B,(,Oh) = / / 6t(7T}lB —B) - p,dxdt (22)
o Ja
2 T
-3 / / Ai(m,B — B) - 9,0, dxdt (23)
—Jo Ja
T
- [ % [omB-B). - parar (24)
0 eeg, e
T
+/ /C(mlB — B) - p,dxdt. (25)
0o Jo

Case where B, ¢ V"
From the definition of 7}, for the term (22) we have

/T / (7h(0:B) — 8;B) - ¢, dxdt = 0. (26)
o Ja
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Now we define a new projection operator P, by

1
(Phg)h( = Prg= W/ gdx, Vge L'(Q)nwh>*(Q), and P, = Z Prlg.
K KeTy,

Then by Taylor expansion it can be easily shown that there exists a constant C' independent of h such that

|Prg — gll o) < Chllg|lw1.@)- (27)

Then the i-th term of (23) can be recasted in
T T
—/ / A;i(mpB — B) - 0;¢p,dxdt = / /(P;l.Ai — A;)(m,B — B) - 9;¢p,dxdt
0 Jo 0o Ja
T T
— / / (7ThB — B) . Ph.Aiai(pthdt = / /(PhAZ - Az)(Tth - B) . aicphdxdt (28)
0o Jo 0o Jo

because A; is symmetric, P,A;0;¢;, = Pyu;0ip;, € V™ (Q) and because of the definition of 7;,. Now we give an
estimate for the term (28). Thanks the approximation properties (7) and (27), the inverse properties (8), and
the Cauchy-Schwarz inequality we obtain

T
/ / (PrA; — A;)(m,B — B) - 0,0, dxdt
0 Q

T 1/2 1/2
< / Z (/ B — B||§dx) </ | (PrA; — Ai)aﬁahHng) dt
K K

0 ke,

T
< C (T, || Aill o (o,m5w 100 (92)) 5 1B Lo (0,114 (02)) ) hm“/o llenllLe(o)dt. (29)

For the term (25) we get

T
/ / C(mpB — B) - ¢ dxdt
o Ja

T
> / C(myB — B) - ¢, dxdt
0 KeT,, K

T
<l [ ¥

KeTy,

<

1/2
([ 1B~ Blax) st
T
< O (T, €l L= (0,1:L%(€2))» BlLoe (0,7:1m+1(2))) hm“/ lenllLz@dt.  (30)
0

Now it remains to estimate the term (24). First have

— 1
9(mB —=B)e = Acx(mB—B)— Ak [(mB - B),
A — | Ac Acic + A
_ %(MB Bk + W(MB _B)x

A

|Ae.x| (|mnB — Blk, + 7B — B|Kk) .
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Since | A, k| is symmetric, using a Young inequality we obtain

T T
|3 [amBoBlleddra < [ 3 [laoxl 2omB - B, Aokl odrds
0 e 0

e€é e€E, v ¢

[ x]

ecEy V€

_1/2 o P 1t
|Ae x| g(mpB — B)e|| dxdt+ E |Ael[enle - [Yn]edDdt. (31)
2 4 /o

e€&y V€

Now we want to estimate the first term of (31). Using (9) and the trace result [[ov|lp2a5) < C |VIlgi/2x) we
get

T 2 T
/ > / \Aexc|"2g(rnB — B).  dxdt < 2/l 0,72 o) / 7 7B = Bl o) dt
0 cecg, /e 0 ket

T
< 2||uHL°°(O,T;L°°(Q))/ > 1mB = Bllgpz i) dt < C (T, [ul| (0,750 () Bl (o, i+ ))) B2
0

KeTn
(32)
Finally, from (20)—(26), (29)—(32) we get
1 (T
Imnen(T)lIEz0) — lmnen(0)llzz) + 5/0 > [ | Acllmnenle - [rhenledTdt < C1a7™ !
ecéy V€
T T
o™ [ men®le + [ @IClm + 17 ull~o) Imend [ oyt (33)

Using a Young inequality, followed by a Gronwall inequality, from (33) we get, Vt < T,
Hﬂheh(t)”L?(Q) <C <||7Theh(0)”L2(Q) + hm+1/2) e(HCHLOO([o,T]xsz)Jr%||V~U|\Loe([o,T]xsz)+C2/2)t < Ch™+1/2,

Finally we get, Vt < T,

IN

[mnen()llz() + ITnen(t) — en(t)|lL2 (o)
I7nen(®)llLzi) + [maB(t) = B(t)|lL2(e) < Ch™ /2

len(t)llLz (o)

IN

which finishes the proof when By, € V.

Case where B, € W}
We have to give new estimates for the terms (22)—(25). For the term (22), using Cauchy-Schwarz inequality
and the approximation property (10) we get

T T
/ / (Hh (8tB) - 8tB) . cphdxdt < C (T, |8tB|Loo(07T;H1(Q))) h/ ||(thL2(Q)dt. (34)
0 Q 0

Now let us estimate the term (24). The inequality (31) is still valid. It remains to give a new estimate for the
first term of the right hand side of the inequality (31). Using the approximation properties (10)—(12), and the
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fact that divIl; B = divB = 0 then we get

[x]

e€&p

2 T
| A, x| 7?9(11;,B — B). ,dxdt < 2[lull Lo 0,7:0(02)) / > IMMB = Bllfz ok di
0

KeT,

T
2
< 2||“HL°°(O,T;L°°(Q))/ Y [ITB - Bllyy ) dt
0 KeTy,

T
2 2
< 2||“HL°°(0,T;L°°(Q))/ > (||HhB - Bllacux) + [IInB = B) x VHL2(8K)) dt
0 KeTy,
<C (T, ||uHL°°(O,T;L°°(Q))a ||B||L°°(O,T;H2(Q))) h?.

Now we give a new estimate for (23) and (25). Using the Green formula (14) we obtain

2 T T
- Z/ / A;(II,B — B) - di¢p;, dxdt +/ / C(II,B — B) - @, dxdt
170 Ja o Ja

:/O ) /K <; 9; (‘Ai(HhBB))JFC(HhBB)) - dxdt

KeT,

T
*/ Z Z Ae,x (IIyB — B) - ¢, dI'dt.

0 KeTp, ecok €

First we look at the term (37). Using the approximation properties (10)—(12), inverse properties (8), the fact

that div II;B = div B = 0 on K and the Cauchy-Schwarz inequality we get

T T
/ Z Z Ae,k (II,B — B) - @, dI'dt < 2[|ul| Lo (0,11 () / Z TWB = Bl 2ok [l0nllLeax) A

0 KeTp ecok’€ 0 ke,

T
< 2Hu||L°°(O,T;L°°(Q)) h=1/2 (11, B — B”w K ||‘PhHL2 Ky dt
0 (K) (K)
KeTy,

T
< 2|uf| oo o, () R/ [1I,B — Bllg curb i) T [(IL,B —B) x v . 9K) ||<PhHL2(K) dt
0 ( ) (
KeT,

T
< O (T, [lull Lo, (), IBll Lo 0,1:12 (2))) h1/2/0 len Lz dt.

As div II;,B = div B =0 on K the term (36) can be recasted in

T 2
> / <Z 0 (AZ-(HhBB))JrC(HhBB)) -y, dxdt
0 KeT, VK \i=1
:/O KEE;L/KVX ((I1,B — B) x u) - ¢, dxdt

:/OT Z /K{((HhB—B)-V)u-i-(HhB—B)diV u+(u'v)(HhB_B)}-(pthdt,

(39)
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Now we have to estimates the three terms of (39). For the two first term of (39) we get

T T
> / (IIyB = B) - V)u- ¢,dxdt < 2||UHL°°(0,T;WL°°(Q))/ > B = Bllpz i) llenllee )
0 ker, 'K 0 KeT,
T
< C (T, [|ull g o, (2))s Bl Lo (0,711 (92))) h/o lenllpz ) dt (40)
and
T T
> / (II,B — B)div u - ¢, dxdt < ||diVu||Loo(o,T;Loo(Q))/ > IMAB = Bllpz k) 1l 1)
0 ke, VK 0 ke,
T
< O (T, [|dival| Lo 0,7;25 () Bl Lo (0,711 (2)) h/o lenllye (o) dt- (41)

Using the approximation properties (10)—(12), the continuous imbedding (13), the fact that div II,B = div B = 0
on K and the Cauchy-Schwarz inequality then we get

T
3 /(u-V)(HhB—B)-cphdxdt
0 ke, /K

T
SQH“HLO@(O,T;LOO(Q))/ > ITAB = Bllg ) 1l )

KeT,
T
< 2HH||L°°<0,T;L°°(Q>>/ >, <|HhB ~ By + (B —B) x V6||H1/2(e)> lenllLe i) dt
0 KeT, c€OK
T
= C(TvHU||L°°(07T;L°°<Q>)7|\B|\L°°(07T;H2<ﬂ>>)h1/2/0 len g2y dt- (42)

Finally, by introducing the estimates (34)—(42) into the relations (20)—(25) and using a Young inequality followed
by a Gronwall inequality we get

IMhen®le@) < O (IMhen(Ollaq +ht/2) el IVl te/2)t < optl,
and Vt < T, we obtain
len(®)llL2) < [ITren(t)|L2) + [ITren(t) — en(t)lL2). < Ch'?

which ends the proof when By, € W}l O

Remark 3. When B; € W,} we can not expect to obtain error estimate like O(h3/ 2) which is got when
B, € Vhl. The reason is that the space Ry does not reproduce all the polynomial fields of P! which are
divergence free. Then the approximation properties of Ry are the same as the ones of IPY. That’s the reason
why we loose one order of convergence. Nevertheless we could loose one order more if there were not the
approximation property (11). As the approximation in the space H(curl) and the space L? is of the same order
we can get convergence of the scheme whose the convergence rate is in O(h'/2?), and that’s why the Nédélec
space is interesting . Unfortunately it could not be generalized to the space Ry with k > 1 as div Ry # 0. We
observe that P® ¢ Ry C P! and that W}! C V;! with dim(W,}) = 3 and dim(V}}) = 5.
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4. ANALYSIS OF THE FULLY DISCRETIZED SCHEME

In this section we present the stability, convergence and error analysis in L? of the fully discretized scheme.
The main result is

Theorem 5. Let u and By sufficiently reqular, typically we consider that u € WhH™> ([0,+oo[x(IR2)) and
By € H™1(R?) and let us assume that there exists a constant 3(c) depending on o such that the CFL condition
At < B(a)h*/3 holds. Moreover we assume the condition (3) and |[0%]/r2() = |B° — mBO||L2(q) = O(R™ ).
Then there erists a constant C = C(||ullyw1.(0,11x0), T, ) independent of h such that

Ballie0,7:L2(2)) < CIBr(0)]|L2(0),

where By (0) € V;™ or B, (0) € W™ withm = 1. Moreover there exists a constant C = C (T, a, ||[ulw 1.0 (jo,7]x)
||B||W3,oo(07T;Hm,+1(]R‘2))) independent of h such that

Nt
IB = Bullie o) + | At Y Y [ AZ|[BE = B(t")]e - By — B(t")]dl' < C (A? + ™)

n=0ec&, V°

wheren:% if B e V" andn:f% if B, € W/ with m = 1.

Remark 4. The CFL condition At < (3 (a)h4/ 3 is surprising, but it seems that it is linked to the time discretiza-
tion with a Runge-Kutta scheme of order two. Indeed in [25] the author also obtains the convergence of a second
order Runge-Kutta finite element scheme under the same CFL condition. The minimal regularity assumptions
to obtain convergence are u € W and By € H! when By, € V,? or By € H!(curl) when By, € W,%

Proof.

L2-stability. We begin by proving the theorem when By, € V;™ and therefore we will modify some estimates to
adapt the proof when By, € W)L, First we begin by proving the L?-stability of the scheme. This proof remains
true for the two choices of approximation space. If we take ¢, = B} in (16), and ¢, = Y} in (17) then after
summing over all elements K of the partition 75, the sum (16)/2+(17) gives

IBL iz o) — IBRIE20) — 1B = YilEao) = At (F" (B, By) + F (Y, X)) - (43)

where F"' =3 Frlg. First we will give an estimate of terms of the form of 7" (¢}, ¢,) and in the second

moment we will give an estimate for the term | B} — Y7||2(q). Using (129) and the Green formula (14) we
get

Flonen =5 3 [1Atxlien - lealdl = [ ¢y guaxdt =3 [ Vowlonlax.
ec&p V¢
From the condition (3), and the equations (44) and (43) we get

1B ey < (1- a3 ) IBEIEa) — a5 YR s + IBE™ = Y3 lRace (45)
It remains to estimate the term | B} — Y7||2(q). To do this we remark that after summing over all elements

K of the partition 7, the sum (17)—(16)/2 gives

/Q(BhH - Y}) ppdx = ) (]: +1(Yha ) — F" (B, ‘Ph)) . (46)
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Let us estimate the right hand side of (46). We have

) (]:nﬂ( heen) — F( hv‘ph Z Z/ At AnHY -A?BZ) - Oippdx (47)
KeT, i=1
-> ) /At YR — 9" (BR)e) - predx — Y / AL (C™TYY — CBY) - 9;,,dx.
KeTy, ecOK KeTy,
By seeing that there exists a time ¢7 and ¢' such that AL i = AZH AtatA x and [A7 | = |AZ}1 fAt3t|Ai,K|

where ¢ = " + YAt and tf = " + 0t At, with 0 < l<land 0<6f < 1, then we get

9" (Y)e —g"(Bi)e = An+1Yh 62 [Yple — A KBh +
= —g" (B} — Y})e + Atg*(B).

K'[ e

where g*(B?), = at.A «B) — 8t‘Ae |

[B}]e. Then (47) can be rewritten as

> (-7'— YR @) — F( ha‘Ph)):*?]'— TUBL - Y7, en) +G(BY @)

where

G(BY, @,) = AtQZ / AT By - Dippdx — AL Y Y / (B, - @ edl — At? /Q OC'BY -, dx  (48)

KeTy eecOK

with ¥ = t" 4+ 9% At and ¢ = ¢" + 6° At such that AP = A?H — At@t.Af" and C" = C*t1 — Atd,C’. First we
estimate the term G(B}, ¢;,). From the Young and Cauchy-Schwarz inequalities and the inverse properties (8)
we get

a2 Y [ aAB o < Y / {cots Joti IB115 + 512 w3 | ax
Ket, Ket, L ([0,T]xR2) 3
< COTE B + 5 lonlia (49)

At2 / 5,5C Bh th
KeTy,

2 € 2
< C(10C I~ omixmn) ) A BRI ey + 5 I0nllEaey,  (50)
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and
A2 YT YT [ G (Bh)e - ppdl (51)
KeT, ecOK V¢
OA? o — By Al DAL ¢ + 0| Al
< |ag2 Z Z/(t e, K . a e,K|B,IL(€+ i Ae K ' 1 e,K|B7;( - ppedl’
KeT, ecOK V€
< C (106 Ak | ooz ) A 3 3 [ (1Bl Iexclls + 1Bk s ok l) dr
KeTy ecOK ¥*
At4 2 3 2 At4 2 3 2
< Cle)=- > HBZHL2(8K)+h§ D llenllieom) < Cle) = |BZHL2(Q)+§H‘10h”L2(Q)'
KeT, KeT,,
From (49)—(51), we get
n At4 4 ni2 2
IG(BL, en)l < Cle) ?JFAt IBh 20 + € llenllta o) (52)

Now we will estimate the term AtF"1(V}, ;). From the Young and Cauchy-Schwarz inequalities and the
inverse properties (8) we get

n At? €
80 Y [ AL dupnix| < OO T IVl + 5 enlim) (59
K
KeT,
N £
At Z / C"HVy - ppdx| < C(e)At? ||VhHi2(Q) T3 ”‘thi?(Q) ; (54)
K
KeTy,
and
At n+1 AtQ 2 3 2
Z Z 9" (Vi)e  pgdl| < C(E)W IVillgzq) + 3 lenllizq) - (55)
KET;, ccdK ¢
From (53)—(55), we get that
A At? 2 2
|ALF (Vi op)| < C€) 75 [IVallLz ) + € lenlliz ) - (56)

By taking ¢, = B} — Y7 in (46), and from (52) and (56) we obtain

2

HBZJrl - YZ||L2(Q) < |At‘7:(BZ - Z?BZJA - YZ)| + |g( Z?BZJrl - YZ)|
o2 At a2 At 2
<2 B - YR + OO 1B = Vil + 0 (G5 + 80 ) Bl (67

Let us estimate ||B} — YZHi?(Q). By taking ¢, = B} — Y} in (16) and from the estimate (56) we get

At?
1By — YhHL2(Q) = AtF"(By, B - Y) <¢|Bj, - Yh||L2(Q) + C(E)—g HBhHiﬂ(Q) : (58)
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If € is small enough, from (58) we deduce ||B} — Y};Hi?(m < C(&)Ah—t; HB};Hi?(Q) and using (57) we get
a2 Attt A 2
5+ = ¥y < 0O (8 + 57+ ) 1B oo

If we suppose At < C(g)h*/3, from (59) and (45) we get

B 1HL2(Q) (1+CAY ZH%m) and  [|B) " ||2) < e“TIBR(0)]|L2(q)-

15

Convergence and error estimates in L?. Now we will prove the convergence of the scheme and show some
error estimates. First of all we look at the case B € V™ and we will change some estimates to adapt the proof

when B € W,}. We set

Y (t,x) = B(t,x) + 0;B(t, x) At. (60)
Using Taylor expansion in time we get
At At 3
B(t + At,x) — B(t,x) — 8tB(t,x)7 —0B(t+ At,x)? = O(At”). (61)
Using Taylor expansion and from Equations (2) and (60) we obtain
2
OB(t+At,x) = — Z Dr, (Ai(t + At,x)B(t + At,x)) — C(t + AL, x)B(t + At, x)
2
- Z Ox, (Ai(t + At,x) (B(t,x) + 0:B(t, x) At + O(At?)))
—C(t + At,x) (B(t,x) + 0;B(t,x) At + O(At?)) (62)
2
= - Z O, (As(t + A, x)Y (£, %)) — C(t + At,x)Y (£, %) + O(A?).
From (60) and (61) we get
1 1 At ;
B(t + At x) = 5B(t,x) + 5 Y (1, %) + - OB(t + At x) + O(AL). (63)
From (62) and (63) we get
B(t+ At,x) = 1B(t )+ lY(t ) — gi& (At + At x)Y (¢, %))
) X - 2 ) X 2 ) X 2 Pt Z; T k) X Y X
At 3
77C(t + AL x)Y (8, x) + O(AL). (64)
Finally from (60) and (64) we obtain
2
Y(t",x) = B(t",x)—AtY 0, (A} (x)B(t",x)) — AtC"(x)B(t", ) (65)
i=1
2
Bx) = SBUx) 4 pY(x) — B Y o (AT Y () - S Y (i x) + O(Ar)
i=1
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If we take the scalar product of (65) and (66) with a test function ¢, integrate over a cell K and use the
Green formula (14) then we get

/ Y" - ppdx = / B" - ¢, dx + AtFi (B, ¢3) (67)
K K

1 1 At
/ B ppdx = / <‘Bn " _Yn) S+ (Y @) + / €(t",x) - ppdx (68)

where [[€(t", )]s (0,7;L2(02)) = O(A#?). We set the following notations 6% = m, Y™ — Y7, 6% = m,B" — By,
ey =Y"-Y}!, I¢ =mY" =YY", I = m;,B" — B", e}y, = B" — B}, If we substract (16) to (67) and (17)
to (68) we obtain

[ Sedx = [ oot e (69)
K K
n+1 1 n 1 n 1 n+1
o - ppdx = §5Y + 553 Cppdx+ STk (n) (70)
K K
where
Hicten) = [ (B~ Th) - oudx+ AFR(B" 1) — MF (B 01) (71)
and
*7172'—"_1(90}1) = / (21g+1 - I{L( - Ig + e(tnvx)) . Sohdx + At}—}?’_l(Y"a Soh) - At}—}?—i_l( ;LL’ Soh)' (72)
K
We set
H'= > Hplg, and J"= > Jrilig. (73)
KeTy, KeTy,

If we take @), = 0 in (69) and ¢, = 0% in (70), after summing over all the element K of the partition 7}, the
sum (69)/2+(70) gives

n 2 n |2 n n |2 n(sn n n
||5B+1||L2(Q) - H(sBHL2(Q) - ||5BJrl - 6Y||L2(Q) =H (6B) + j Jr1(5Y)' (74)
In the following we will give estimates for the three terms H"(6g), 7" (6%) and ||6pt" — (5@”1‘2(0).

Estimate of H"(0%). From equation (60) and the approximation properties (7) of 7, we obtain

|Z5*t - ﬁHLz(Q) + 7% — il ) < CAth™ OB Loo (0, 1mm+1 (0)- (75)
Using (75), the Cauchy-Schwarz and Young inequalities we have for the first term of H™ () the estimate
> / (Iy —Ip) - dpdx < / IZ% — I 2/108 12 < CAth*™ 2 + At |65 12 q) - (76)
KeT;, VK @
Now we estimate the term AtF™(B"™ — m,B™, ¢,;,). First we notice the decomposition

Aty / AN(B" — B yppdx = AL Y / (Py A" — A™)(mpB" — B") - Oy dx
K K

KeTy, KeTy,

Aty / (mB" — B") - P Al Oppdx = At S / (P A" — A™) (1, B" — B") - dyppdx  (77)
K K

KeT, KeTy,
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because A? is symmetric, P, AT0;¢p;, = Prul0;), € V() and because of the definition 7. Now we give an

estimate for the term (77). Thanks the approximation properties (7) and (27), the inverse properties (8), the
Cauchy-Schwarz and Young inequalities we obtain

Aty / (PyAT — AP)(maB" — B") - dyipy dx (78)

KeTy,

<y / DA o 1002 a1 7 B™ = B3 + Ath2[9hepy I3) dx < ChZ™ 2 AL + Aty 130y,
KeTy,

Next we have

Y [ ermB B pdx < 3 [ (AC s B~ B + Aty ) dx

KeT, KeTy,
< CRPMP2AL+ AtllpplF2 0 (79)

As it has been done for the continuous case (see estimates (31)—(32)) we obtain

At
At Y [ g"(mB" = B"). - [py]edl < CAtR*™ ! T > [ IAZenle - [enledT. (80)
ec&y, € ecép €

From (78)—(80) we get

At
AtF"(B" = maB", p),) < CAth*™ T + 3|y |32 (0 + — 1 AL llpnle - [pnledT. (81)

ec&, V€

Now we want to estimate the term AtF™(B"™,0%) — AtF"(B}, 6%). First we notice that
AtF"(B", 05) — AtF" (B}, o) = AtF*(B" — mB", 6g) + AtF" (05, op)- (82)

From (81) we obtain

AtF"(B" — m,B", 53) < CAh™! 4 3AL]|5% 2 ) + A4t |A7|[62]. - [68].dT. (83)
ec&p V€
From (3) and (44) we get
AP (5,08) < o0l — g 3 [ LA Rl (54)
From (71), (73), (76), (82) (84) we get
M (0) < CAUR™ 4+ 2™ ) 4 (4~ ) A8 3age) — - O [ LAZIIORLe - Dglear. (85)

ec&, V€
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Estimate of J""1(6%). Using (75), the Cauchy-Schwarz and Young inequalities we have for the first term of
J"H(6%) the estimate

> / (2Zp" — Ty — I + e(t"x)) - 0y dx < / 12Z5"" = I3 — I + e(t"x))||2]|0% [l2dx
KeT, K Q

< [ (12857 - Tl + 125~ Blla+ el 16 adx

< C()AHAL® + W) 4 eAt[|6% 172 g - (86)
Now we estimate the term AtF" (Y™, %) — AtF"T1(Y7,6%). First we notice that
ALFTHY™ 8%) — AtFTHY R, 6%) = AFTTHY™ — m Y, 6%) + AtF (8, 6%). (87)

The same proof for the estimate (81) leads to

At
ALY = mY" ) < CEMR™ 4 By Ry + 5 3 [ 14T@ile - fealudls (58)
ec&y €
From (88) we obtain
At
ALF" (Y™ — m Y™, 0%) < C(e)Ath?™ ! 4+ eAt]|0% |32y + - > [ AZ([0%]e - [0%]ed . (89)
ec&y e
From (3) and (44) we get
n(sn  n n (|12 At n|rsn n
AtF"(0y,0y) < —aAt|dy|lLzq) — > Z |AZ [0y ]e - [6y]edT. (90)
ecE V¢
From (72), (73), (86), (87), (89) and (90) we get
At
T"HH0Y) < Cle)At {(A#? + ™2 4+ R} + (42 — ) At0Y I o) — = /|A2|[5§?]e [0y ]edl’. (91)
ee&y "¢

Estimate of [|65"" — 6% ||12(q). First we notice that after summing over all elements K of the partition 7;, the
sum (70)—(69)/2 gives

1
[ 05+ = 8%) - pudx = 5 (7" (o) =) (92)
where
1 1 1
9 («7"+1(<Ph) - Hn(‘Ph)) = ) /Q(QIQH — Iy — Ip +€(t"x)) - ppdx — 3 /Q(Igl( —Ig) - prdx+ L (py,) (93)

with £(¢,) = At (F"THY™, ¢p,) — F"THY R, 0,) — F(B™, ¢,,) + F (B}, ¢,,)) . From (75) and (76) we have

(T —Th.n)al < CARP™ 4+ Atllp,[I72(q) (94)
|2ZE™ = T% —I5 + €(t"x), 01) 4 CALAL + ™) + Aty 1F2(q)- (95)

N
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Now let us estimate the term £"(¢},). First we notice that

Lpy) = AL(FHHmY" =Y @) + F Y =Y )
+F"(m B = B", ) + F*(By — mB", ¢4)) - (96)

From (56) and the approximation property (7) of 7, we get

|At‘7:n(7thn - Bna (ph)|

IN

€ m

Z”‘Ph”%ﬂ(g) +C(e)At*h? ||B||%oo(0,T;Hm+1(Q))a (97)
T n n € m

|ALFHY" —m Y )| < Z||‘Ph”%2(9)+c(5)At2h2 Y11 0,1+ (52))- (98)

Now let us estimate the remaining term of £"(¢,,), that is to say AtF" (6% ;) — ALF" (6%, ¢),). First we
notice that

ALF"H0Y, pn) — ALFH(0g, )) = —AtF OB — 0%, 1) + G(08, @n) (99)
where G(-, ¢;,) is defined by (48). From (56) we get

‘At}- (g — oy, ‘Ph)| < ZH‘Ph”iz(Q) + C’(s)?ﬂ(ﬁg - 5YH%2(Q) (100)
and from (52) we get
Att €
G008, ¢n) < C(e) (? + At4) ||5}%||i2(9) T H‘Ph”?ﬂ(ﬂ) : (101)

Now let us estimate the term ||dg — 5@”%2(9) which appears in (100). If we take ¢}, = 0 — 0% in (69) we get
165 = 0% 120y = H" (6% — 0B) (102)
where
HM (6% — 0g) = (Zy — I5,0% — 0g)a + AtF*(B" — mpB", 6% — 0) + AtF"* (m,B™ — B}, 0% — 05).  (103)
The estimate of the three terms in the right hand side of (103) gives for H" (0% — ) the inequality

At?

H" (8% — 05) < At]l6y — 0pllTa () + Cle) <At2h2m + Ath2m+2—2|5ﬁ|i2(m> +2¢[|0% — 0pl[Ea(q)-  (104)

If £ and At is small enough, (102) and (104) leads to

At?
16% = 0Blli2y < Cle) (AtQth + Ath*™+? + —2||5%|%2<Q>) : (105)

By taking ¢, = 0t — 6% in (92) and thanks to relation (93)-(101) and (105) we get

H(sg-i-l _6@H%2(Q) < C(E)At (h2m+2 + (AtQ +hm+1)2 +Ath2m +At3h2mf2 +At2h2m)

n+1 n |12 4 At4 At4 n |12
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If At and ¢ is small enough and At < C(g)h*/? then (106) leads to

||517§+1 -~ 5@@3(9) < O(e)At <h2m+2 (AR 4 2 p2mta/3 4 h2m+8/3) (107)

+C(e) (At4 AP At) 1651220y < C(e)At ((At2 R 4 h2m+4/3) + C(e) AL 122 )

Finally the estimates (74), (85) , (91) and (107) lead to

195 ey <~ 3 [ 1421158l - [3loar -

ecéy

> [y (108)

ec&y
+ (1+ Cla, ) At) 1051172 () + At(de — ) [|0% |32 (0 + Cle) At ((At2 + R 4 R 4 h2m+4/3) :
Using (105), (108) becomes
65" Rz < (1+ Cla,e)At) 168720y + C(e)AL ((AE* 4+ BTH1)? 4 p2mH1) (109)

A discrete Gronwall inequality and (109) enable us to obtain
2
165+ 1720y < I0BIIF2(0)e” @ + (AF + BT 4 pZH < © (AtQ + hm“/Q) (110)

because [|6% HLQ(Q) = ||B° - WhBOH[,?(Q) = O(h*™*2). Finally, using (110) we get

1/2
IBi:(x) = B, 0)l3e() < (ImB" (%) = BU" %) ey + 108 132(0)) < C (A8 +n712).
To end the proof we notice that (108) implies that

At

4

2
|AZ|[05]e - [05]edD < (1 + Cla, &) At) |05]|7 20y + CAEL (At2 + hm+1/2) . (111)
ecE V€

If we make the sum on the index n from 0 to Ny in (111) we obtain
2
Atz 3 / A2 (5B - [Fa]dT < C (AL 4+ pmt1/2)

n=0e€c&y

Now we suppose that B, € W;. Then we see how change the estimates for H"(dg), J""!(6%) and
05T — 6% [lL2(q). First we give a new estimate for the term AtF"(B™ —II,B",¢,,). Using the Green for-
mula (14) we obtain

2
fAtZ/ AP (IT,B™ — B") - 9;0,,dx + At/ C"(II,B" — B") - ¢, dx
, Q

=4t ) / (Za i (I, B" — ”))+AtC"(HhB”—B”)> cppdx (112)

KeTy,

—AE Y > /AeKHhB” B")-@,dl.  (113)

KeT), eeOK
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First we look at the term (113). Using the approximation properties (10)—(12), inverse properties (8), the fact
that div I, B™ = div B® = 0 on K, the Young and the Cauchy-Schwarz inequalities then we get

At >N [ AL (I, B" — B") - ¢, dl

KE€Ty, ecOK V€

— n ni2 2
< E {2Hu||2L°°(O,T;L°°(Q))Ath '|m,B" - B HL2(aK)+Ath|\<ﬂh||L2(aK)}
KeT,

_ 2 2
< 3 {2l oy gy AT ITB” = By ) + At len oy }
KeT,

— n n|2 n n 2 2
< 3 {2l oz, o At (IIB” = By o) + [ (I0B” = B") x 3oy ) + Atllenlfaie) |
KeTy,

< C (T, [l oo 1 () IBll L (0.7:182(0))) Ath + At ]|y 12 - (114)

As div II;,B™ = div B" = 0 on K the term (112) can be recasted in

At > /K (Z; d; (AMI1,B"™ — B")) + C™(I,B" — B”)) - ppdx (115)

KeT,

= At Z / {((ITIyB™ —B") - V)u" + (II;,B" — B")div u" + (u" - V)(II;;B" — B")} - ¢, dx.
KeTy, K

Now we have to estimate the three terms of (115). For the two first term of (115) we get

At > /K((HhB”—B”)~V) u” -, dx

KeTy,
n ni2 2
< Z {4||UH%°°(O,T;W1v°°(Q))At [B" = B™ |12 g + At H‘Ph”L?(K)}
KeTy,
< C (T, ul| p (0. 75wr o0 (@) Bl o.mam @)) b2 + At |l (116)

and

Aty / (I1,B" — B")div u" - ¢, dx
KeT, K

. 2 2
< Z {Hdlqu%OO(O,T;LOO(Q))At |1, B"™ — Bn||L2(K) + At H‘10h||L2(K)}
KeT,

< C (T, ||divul g (0,72 (0) IBlroe (0.7:811 (2))) 1 + At [l 12c - (117)
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Using the approximation properties (10)—(12), the continuous imbedding (13), the fact that div II,B = div B =0
on K and the Cauchy-Schwarz inequality then we get

Aty / V)(I1,B" — B") - ¢, dxdt
KeTy,
2 2

< > {1l oz (o A ITAB” = B[ ) + At lenlFa i)}

KeT,
< Z {CAt<|Hth BnHH(curl Kt Z |(II,B™ — B") x V€||H1/2(e)> JFAt|‘Ph|L2(K)}

KeTy, ecOK

2

< C (T, [ullL=(o,r;=(2)), Bl o,7:m2(0))) hAL + Aty (g - (118)

Using (112)—(118) and looking what it has been done in the case of the continuous case for the estimates (31)
and (35) we obtain

At

AtF*(B"™ —11,B", ¢;,) < CAth+3At|\<ph|\L2(Q) +— 1

[ 1Atlen. - foar. (119)
ec&, V€

By changing the approximation properties of 7, by those of II, using (119), and following what it has been
done in the case where B € V;™, the new estimates for H"(0%), J"+(6%) and [|65™" — 6% ||L2(q) are

H™(05) < CAt(h + h?) + (4 — ) At||63]|7 2 () — T > /IAe |[68]e - [0B]edT, (120)
ecEy v €
At
T 6%) < C(e)At {(A + h)* + h)} + (4 — ) At]|0% |12y — T |AZ|[6% ]e - [0%]edT (121)
ey V€
and
657! — 6% l12(q) < Cle)At ((At2 +h)2+ h4/3) + C(e) At]165 1320 - (122)

Therefore (120)—(122) and (74) leads to

1/2
IBJ(x) — B(t",%)||r2(0) + (Atz Z/w [08]e - [08]. dF) gc(At2+h1/2).

n=0e€c&y

5. CONCLUSION

Here we have proven the convergence of some locally divergence-free discontinuous Galerkin methods for the
induction equation. The next step is to see how these schemes behave numerically and compare them with
other known schemes. For this purpose, we can couple the discontinuous Galerkin scheme for the induction
equation with a finite volume scheme for the hydrodynamic equations or use a discontinuous Galerkin scheme
for both where the hydrodynamic variables can be approximated in a different finite dimensional space. This
work will be the matter of a future collaboration.
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APPENDIX A. PROOF OF THEOREM 2

Thanks to the theorem 1 there exists x € V;"*(2) such that

v = Xllp20) < ChE VI (1), VK € T (123)
Moreover we have
2 2 2
mnv — VHL2(Q) < Z [mnv — VHL2(K) < Z (‘WK X2y T Imex = Xl ) + I — VHL2(K)) :
KeTy, KeTy,

From (123) we have ||v — X||i2(K) < C’hf(m+2|v|%{m+1(m. From (6), (123) and Cauchy-Schwarz inequality we

obtain that || (v — x)[Eaqe) < Imacll v = X[y < IV = X[y < OB (¥ i ). Using the fact

that x satisfies (6), if we choose ¢ = (TxXx — X)|,, then we have ||mxx — XHiQ(K) = 0. Then we obtain

[7nv — VH?}(Q) < Z [mnv — VHiQ(K) <C Z hi 2y %—I"Hrl(K) < 002h2m+2|"|%{m+1(9)-
KeTy, KeTy,

The proof of the inverse properties (8) which are due to the assumptions of the partition 7j (see [2]) can be
found in [5]. Following the proof of the approximation estimate (7), using (5) and the first inverse inequality
of (8) we get |1V — Vgrxy < O™ F|V|gmii k), VK € T, v € S™H(Q) with k < m + 1. From this last
approximation result and the interpolation theorem of Lions and Petree [19] or theorem 1.4 in [15] we obtain
approximation result (9).

APPENDIX B. PROOF OF THE STABILITY RESULT OF THEOREM 4

Here we prove the L2-stability of the semi-discretized scheme in space. This proof remains true for the two
choices of approximation space. Let L (+,) the bilinear form defined by

Ly (B, py) —/ /atBh ppdxdt — Z/
0

/AB,Z- Oy, dxdt

KeT,
/0

with ¢, € V;™ or ¢, € WL If we set [p,]e = (px, — ‘PK)| then we can rewritten (124) as

/ (Bh)e cphdth—i—/ /CBh prdxdt  (124)
KeTy ecOK

2 T
Ln(Bh,ep) / /(%Bh ‘Pthdt*Z/O /AiBh~8i<,ahdxdt
1=1
/ Z/ (Bh)e - [¢1] dth+/ /CBh @, dxdt  (125)

eclp
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where &, denotes the set of all the faces e of the partition 7j,.
If we take ¢;, = By, in (125) we obtain

1 1 T
LiBn, ) = IBM)F2) — 51BO)F2q) + CBj, - Bpdxdt
2 2 o Ja

2 .7
-y Z/ / A;Bx - 0;,Bdxdt
0 K

KeTy, i=1

T
f/ > [ 9(Bn)e - [Bhedldt.

e€&, v €

From the definition (18) of the upwind flux, the term (127) can be rewritten as follows:

(126)

(127)

T T . 1 T
/0 > / g(Bh)e - [Bpedldt = /O > / Ac kBh.c[Baledldt — o /0 > [ A k|[Bnle- [BaledTdt (128)

e€€y eelp e€&p V°

= Bx+B
where B, . = (%

) . Now let us rewrite the term (126). By using the fact that

e

1 1
.AiBK . &BK = 58,‘(./41']31( . BK) — 561AZBK -Bx (129)
and the Green formula (14), we obtain:
2 T
-y > [ [ ABk-oBrax
KeT, i=17/0 /K
1 (7 1 (7 & ,
= 5/ /V-u||Bh||§dxdt—§/ > Y > | ABk By gdldt. (130)
0 Ja 0 KeT, ecok i=1"¢
From the fact that A; is symmetric and hence A i is, and the relation A. g, = —Ae i, the second term
of (130) can rewritten as
1 [T 2 _ 1 [T
—5/0 > Z/AZ—BK-BKz/;KdI‘dt:—g/O > > [ AcxBi - Bgdrdt
KeT), ec0K i=1"¢ KeTy ecOK ¥ ¢
1 /7
=— [ > [(AxBx By — A xBy, - By, )dldt
2 O ’
e€&y ¢
1 (T
=3 Z (Bk + Bk )Ac.x (Bk, — Bg)dI'dt
2 O €
ec&y V¢
T . T -
:/ Z/BhﬁeAe,K[Bh]edth:/ > /AC,KBh,e-[Bh]edth. (131)
0 0

e€&y, 7 ¢ e€&y V¢
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From (128)—(131) we can write

1 1 1 (T
Ln(By,Br) = §||Bh(T)||%2(Q)7§”Bh(0)”i2(9)+5/0 Z |Ae. ik |[Bhle - [Bp]cdl'dt

ec&p Ve

T 1 T
+ / /CBh-Bhdxdt+—/ /v-u||Bh||§dxdt.
0o Ja 2Jo Ja

Since Ly, (B, Br) = 0 then from the previous equation we get the inequality

t
IBr()IE2() < IBr(0)l[22(0) + (2CI L= (0,11x0) + ||v'u||L°°([O,T]xQ))/O IBr()lIE2(0: ds,

for all £ < T'. Then using a Gronwall inequality we obtain

(1]
(2]

(3]

(4]

[11]
[12]
[13]

[14]
[15]

[16]
[17]

18]

[19]

HBh(t)HL?(Q) < ||:Bh(0)||LQ(Q)e(HCHLOO([O,T]><Q)+%|\V~u||LOO([0,T]><Q))t7 Vt<T.
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