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Abstract. Extended magnetohydrodynamics (XMHD) is a fluid plasma model [J. P. Goedbloed
and S. Poedts, Principles of Magnetohydrodynamics, Cambridge University Press, Cambridge, 2004]
generalizing ideal MHD by taking into account the impact of Hall drift effects [M.-J. Lighthill, Phil.
Trans. R. Soc. Lond. A, 252 (1960) pp. 397--430] and the influence of electron inertial effects [V.
R. L\"ust, Fortschr. Phys., 7 (1959), pp. 503--558]. XMHD has a Hamiltonian structure which over
the past 10 years has received a great deal of attention among physicists [H. M. Abdelhamid, Y.
Kawazura, and Z. Yosida, J. Phys. A Math. Theor., 48 (2015), pp. 235--502; I. K. Charidakos
et al., Phys. Plasmas, 21 (2014), 092118; E. C. D'Avignon, P. J. Morrison, and M. Lingam, Phys.
Plasmas, 23 (2016), 062101; M. Lingam, G. Miloshevich, and P. J. Morrison, Phys. Lett. A, 380
(2016) pp. 2400--2406; G. Miloshevich, M. Lingam, and P. J. Morrison, New J. Phys., 19 (2017),
015007] and which is embodied by a noncanonical Poisson algebra on an infinite-dimensional phase
space. XMHD can alternatively be formulated as a nonlinear evolution equation. Our aim here is to
investigate the corresponding Cauchy problem. We consider both incompressible and compressible
versions of XMHD with, in the latter case, some additional bulk (fluid) viscosity. In this context,
we show that XMHD can be recast as a well-posed symmetric hyperbolic-parabolic system implying
pseudo-differential operators of order zero acting as coefficients and source terms. Along these lines,
we can solve locally in time the associated initial value problems, with, moreover, a minimal Sobolev
regularity. We also explain the emergence and propagation of inertial waves [H. M. Abdelhamid, M.
Lingam, and S. M. Mahajan, Astrophys. J., 829 (2016), 87; G. Miloshevich, M. Lingam, and P. J.
Morrison, New J. Phys., 19 (2017), 015007].
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1. Introduction. Extended magnetohydrodynamics (XMHD in abbreviated
form) is a system of nonlinear evolution equations in the (3 + 1)-dimensional space-
time \BbbR 3

x\times \BbbR t, which was first initiated by L\"ust [32]. It can be obtained [1, 17] from a
two-fluid model (electrons plus ions), under the assumptions of quasi neutrality and
smallness of the electron mass compared to the ion mass, by imposing an auxiliary
ordering on the equations of motion; it can be recovered from kinetic theory [22]; or,
starting with a Lagrangian picture carried by some adequate two-fluid functional, it
can be derived from action principles [11, 26]. XMHD can be formulated as a (non-
canonical) Hamiltonian system [1, 14] which subsumes ideal MHD and Hall MHD,
as well as inertial MHD models. It is equipped with a noncanonical Poisson bracket
[14], a conserved energy [27], Casimir invariants, and topological properties which are
investigated in [18, 24, 31] and references therein.

Extended MHD is motivated by its great importance in astrophysics and geo-
physics. It has proven to be useful in several contexts, like solar wind [3], neutron
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4520 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

stars [4], and nuclear fusion science. In fact, the Hall and electron inertial effects play
a significant role in XMHD turbulence1 [3, 38]; they are currently identified [18, 19] as
potential sources of fast magnetic reconnection mechanisms;2 and they must be taken
into account to obtain more reliable reduced models for fusion plasmas [8]. These
phenomena are dynamical processes, and hence developing the Eulerian approach in
parallel to the aforementioned Lagrangian viewpoint is important. This is precisely
the position of this article, namely to explain how the XMHD evolution equation can
be solved starting from initial data.

Normalizing variables in the standard Alfv\'en units, with \nabla \equiv \nabla x, XMHD is built
with the continuity equation (on the total mass density \rho and the center-of-mass
velocity v),

\partial t\rho +\nabla \cdot (\rho v) = 0 ,(1.1)

and with the following equation for the momentum density1 (where p : \BbbR + \rightarrow \BbbR is
a smooth function of \rho representing a pressure, B is the magnetic field, and \jmath is the
current density):

\rho 
\bigl( 
\partial tv+ (v \cdot \nabla )v

\bigr) 
+\nabla p - \jmath \times B+ d2e (\jmath \cdot \nabla )(\jmath /\rho ) = 0 .(1.2)

Equations (1.1) and (1.2) must be completed with the Maxwell--Amp\`ere equation
\jmath =\nabla \times B (where the displacement current \partial tE is dropped under the assumption that
our system is not relativistic), with the Maxwell--Faraday equation

\partial tB+\nabla \times E= 0,(1.3)

and with a generalized Ohm's law [27], which gives the electric field E in terms of the
other unknowns \rho , v, B, \jmath and the electron pressure pe according to (see [1, 18])

E+ v\times B= - di
\rho 

\nabla pe + di
\jmath 

\rho 
\times B - di d

2
e

\biggl( 
\jmath 

\rho 
\cdot \nabla 

\biggr) 
\jmath 

\rho 

+ d2e

\biggl[ 
\partial t

\biggl( 
\jmath 

\rho 

\biggr) 
+ (v \cdot \nabla )

\biggl( 
\jmath 

\rho 

\biggr) 
+

\biggl( 
\jmath 

\rho 
\cdot \nabla 

\biggr) 
v

\biggr] 
.

(1.4)

The above two dimensionless parameters de and di are independent. They are non-
negative (de \geq 0 and di \geq 0). They represent, respectively, the normalized electron
and ion skin depths. In practice (see Remark 5), they are often found to be adjusted

1Let w \star := v \star  - v be the velocity of species  \star related to the center of mass velocity v. In a two-fluid
context, the net fluid momentum equation involves the momentum flux term \rho i vi \otimes vi + \rho e ve \otimes ve
which can be decomposed in the form \rho v\otimes v+\BbbP \mathrm{d}, where \BbbP \mathrm{d} := \rho iwi\otimes wi+\rho ewe\otimes we is the diffusion
pressure tensor which is a source of XMHD plasma turbulence [3, 38]. Under quasi neutrality, this
contribution \BbbP \mathrm{d} gives rise to the contribution d2e (\jmath \cdot \nabla )(\jmath /\rho ) inside (1.2). For more details, see the
plasma notes by E. Alec Johnson: A derivation of Ohm's law and extended MHD starting from
two-fluid equations. One of our conclusions is that the influence of \BbbP \mathrm{d} can be incorporated through
the propagation of inertial waves.

2In ideal and Hall MHD, the magnetic field undergoes a Lie advection. It follows that the field
lines are conserved (this is Alfv\'en's theorem) and that reconnection cannot occur. By contrast,
the nonideal electric field in the generalized Ohm's law (1.4) can break the frozen-in flux condition.
XMHD equations work at scales which are amenable to collisionless magnetic reconnection as con-
firmed by theoretical considerations [1, 2] and especially by observational evidence [29] in space and
astrophysical plasmas (e.g., solar flares and magnetospheres). In fusion devices, two-fluid effects
must be considered to explain the fast magnetic reconnection dynamics [21], which is identified as
a process responsible for sawtooth oscillations or crashes (which may cause a loss of heat and fast
particles, or even a disruption).
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EXTENDED MAGNETOHYDRODYNAMICS 4521

in such a way that 0\leq de \leq di \ll 1. Knowing that, the relation (1.4) appears clearly
as a perturbation of the ideal Ohm's law (E+ v\times B= 0).

In subsection 1.1, we recall the state of knowledge concerning the mathematical
results about ideal, Hall, and extended MHD. In subsections 1.2 and 1.3, we pres-
ent our main outcomes concerning, respectively, the incompressible and compressible
frameworks. This is also an occasion to outline the plan of the text and to emphasize
some key ideas.

1.1. Mathematical background. We can replace \jmath inside (1.2) and (1.4) by
\jmath =\nabla \times B. We can substitute the electric field E thus obtained through (1.4) at the
level of (1.3). When doing this, we can collect the quantities which undergo a time
derivative, namely

\partial tB+ d2e \nabla \times \partial t

\biggl( 
\jmath 

\rho 

\biggr) 
= \partial t

\biggl[ 
B+ d2e \nabla \times 

\biggl( 
\nabla \times B

\rho 

\biggr) \biggr] 
.

In this way, the expression

B\ast =B+ d2e \nabla \times 
\biggl( 
\nabla \times B

\rho 

\biggr) 
(1.5)

acquires the status of a dynamical variable. The notation B\ast is very common [1, 17, 31].
From there, the unknowns are \rho , v, and B\ast , while the constitutive relation (1.5) is
aimed to express B in terms of B\ast . After some calculations, or directly seeing the
three equations (1), (5), and (6) in [31], we obtain the version of XMHD which is
highlighted in [1, 14, 31] and which is delivered in the form\left\{           

\partial t\rho + (v \cdot \nabla )\rho + \rho \nabla \cdot v= 0 ,

\partial tv+ (v \cdot \nabla )v +
\nabla p

\rho 
+B\ast \times \nabla \times B

\rho 
+ d2e \nabla 

\biggl( 
| \nabla \times B| 2

2\rho 2

\biggr) 
= \nu d2e \nabla (\nabla \cdot v) ,

\partial tB
\ast +\nabla \times 

\biggl( 
B\ast \times 

\biggl( 
v - di

\nabla \times B

\rho 

\biggr) \biggr) 
+ d2e \nabla \times 

\biggl( 
(\nabla \times v)\times \nabla \times B

\rho 

\biggr) 
= 0 .

(1.6)

In physics textbooks, these equations are often supplemented by

\nabla \cdot B\ast = 0 , \nabla \cdot B= 0 .(1.7)

Equations (1.5) and (1.6) are derived (for \nu = 0) in the contributions [1, 3, 4, 14, 27, 31],
which mainly focus on the Hamiltonian formalism, while the Eulerian approach is not
really addressed. Individually, (1.6) does not fall into usual mathematical categories
and its well-posedness does not appear to have been clarified. In fact, the system
(1.5)--(1.6) looks like a quasilinear equation with various second order terms whose
different roles need to be identified. The part \nu d2e \nabla (\nabla \cdot v) where \nu > 0 represents
a bulk (fluid) viscosity. It clearly provides some partial ellipticity on the component
v, namely a control on \nabla \cdot v. But the other (nonlinear) second order terms (which
are driven by de \geq 0 and di \geq 0) do not. Let us consider what can be said about the
influence of de and di.

First, assume that de = 0. Then, from (1.5), we deduce that B\ast = B, and two
situations may be distinguished. For di = 0, we recover the equations of compressible
MHD [33]. For di > 0, we incorporate the Hall current term coming from the third
equation of (1.6) which (for \rho \equiv 1) reduces to di\nabla \times 

\bigl( 
(\nabla \times B) \times B

\bigr) 
. In particular,

when \rho \equiv 1 and \nabla \cdot v= 0, we find the incompressible Hall-MHD system introduced by
Lighthill [28].
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4522 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

The situation de = 0 has been much studied by mathematicians in recent years;
see, for instance, [9, 13, 30, 44]. This has been achieved in the presence of dissipative
terms, namely a shear (fluid) viscosity (\mu \Delta v with \mu > 0) and/or a magnetic resistivity
(\eta \Delta B with \eta > 0). As soon as \eta > 0, the second order terms with di in factor can
be absorbed, and the system becomes locally well posed. But when \eta = 0, Hall-MHD
equations are today known to be strongly ill-posed [10], even in Gevrey spaces [23]
and even if some kinematic viscosity \mu \Delta v with \mu > 0 is added.

In this text, as prescribed by physicists [1, 14, 27, 31, 32], we work with de > 0.
This passage from de = 0 to de > 0 is very significant since it allows us to include
inertial effects that are fundamental in plasma dynamics.3 We make progress in two
directions:

\bullet Looking at the content of (1.6), this improvement (from de = 0 to de > 0) is already
quite an achievement. Indeed, the situation de > 0 seems more complicated: the
symmetric part of ideal MHD is broken (since B is substituted for B\ast ); the Hall term
(with its potential instabilities [10, 23]) is still present; and there are extra nonlinear
second order terms without evident sign conditions. Clearly, supplementary derivative
losses may be expected, while the introduction of de does not furnish any dissipation.
That is probably why the Cauchy problem associated with (1.6) has not yet (to our
knowledge) been investigated.

\bullet In line with the preceding mathematical approaches, we use a touch of dissipation.
We impose a bulk (fluid) viscosity \nu d2e > 0. This condition is not demanding. In
particular, it disappears when the flow is incompressible. The key highlight is, unlike
[9, 13, 30, 44], the absence of shear (fluid) viscosity (\mu \Delta v with \mu > 0) and magnetic
resistivity (\eta \Delta B with \eta > 0). This means that the Hall instabilities [10, 23] can
(locally in time) be compensated by inertial effects (de > 0) without resorting to such
additional dissipative terms.

The question is why? Our claim is that (1.6) becomes locally well posed once
de > 0 and (in the compressible case) once \nu > 0 for the following two principal
reasons:

-- About the influence of de > 0. The analysis of derivative losses (when de = 0)
does not include the constitutive relation (1.5) doing everything completely
differently by modifying the role of B from B\equiv B\ast (when de = 0) to some other
B \not \equiv B\ast (when de > 0) with a gain of derivatives. Despite appearances, by a
change of unknowns, the system (1.6) can be recast as a (foliation of) well-
posed hyperbolic-parabolic systems (whose coefficients and source terms take
the form of zero order pseudo-differential operators). In so doing, the inertial
terms (those with de > 0 in factor) contribute to some (almost) symmetric
structure, involving completely new features. In this interpretation, they do
not provide second order dissipative perturbations. Instead, they contribute
to the appearance of inertial waves.

-- About the influence of \nu > 0. The introduction of a volume (fluid) viscosity
(in place of a magnetic resistivity) is sufficient (and also seems necessary as
in other contexts [37]) to absorb (for reasons like in [25]) the problematic
contributions that remain in the compressible framework when performing
energy estimates.

As a consequence, we have the following:
-- We will involve changes of variables that become singular when de \in \BbbR \ast 

+ goes
to zero. Throughout the text, it is therefore essential to work with de > 0.

3See Remark 5, which explains (by looking at plasma parameters) why de > 0.
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EXTENDED MAGNETOHYDRODYNAMICS 4523

Keep in mind that there is no smooth passage from the case de > 0 to the
case de = 0. For instance, in (1.5), B is expressed in terms of B\ast through
a (partially) elliptic operator which will prove to be (on some appropriate
subspace) of order  - 2 when de > 0 and of order 0 when de = 0.

-- It is essential to assume that \nu > 0 when dealing with the compressible
framework.

Knowing that de > 0, we can prefer a rescaled version of (1.6) that makes us
forget the role of de. To this end, we multiply x, v, B\ast . and B by d - 1

e , while p is
multiplied by d - 2

e . In other words, we work with

d :=
di
de

, x :=
x

de
, v :=

v

de
, B\ast :=

B\ast 

de
, B :=

B

de
, p :=

p

d2e
.

With these conventions, we find that\left\{           
\partial t\rho + (v \cdot \nabla )\rho + \rho \nabla \cdot v= 0 ,

\partial tv+ (v \cdot \nabla )v+
\nabla p

\rho 
+B\ast \times \nabla \times B

\rho 
+\nabla 

\biggl( 
| \nabla \times B| 2

2\rho 2

\biggr) 
= \nu \nabla (\nabla \cdot v) ,

\partial tB
\ast +\nabla \times 

\biggl( 
B\ast \times 

\biggl( 
v - d

\nabla \times B

\rho 

\biggr) \biggr) 
+\nabla \times 

\biggl( 
(\nabla \times v)\times \nabla \times B

\rho 

\biggr) 
= 0 ,

(1.8)

together with

B\ast =B +\nabla \times 
\biggl( 
\nabla \times B

\rho 

\biggr) 
.(1.9)

Let \=\rho \in \BbbR \ast 
+ be a constant positive background density. At the initial time t = 0, we

impose

(\rho , v,B\ast )(0, \cdot ) = (\=\rho + \rho 0, v0,B
\ast 
0) .(1.10)

We work away from vacuum, say with

0< \=\rho /2\leq \=\rho + \rho 0(x) .(1.11)

Note that the parameter de is no longer visible at the level of (1.8)--(1.9). It is in fact
hidden behind the definition of d and behind the preceding change of scales. It keeps
of course some influence. Indeed, let (\rho , v,B\ast ) be a solution to (1.8)--(1.9). We can
adjust di in such a way that di = dde for a fixed d\geq 0 and consider that de can vary.
Coming back to the initial variables, we find that

(\rho ,v,B\ast )(t,x) := (\rho , de v, deB
\ast )(t,x/de) , de \in ]0,1] ,(1.12)

is a family of solutions to (1.6) which belongs (when de > 0 goes to 0) to a perturbative
concentrating regime4 (the periodic regime will not be investigated here) near the
constant solution (\=\rho ,0,0). Indeed, the velocity and magnetic components (v and B\ast )
are of small amplitude de while the profiles are in \scrH s (and thus they are decreasing
functions, typically compactly supported). Retain that de has a significant impact
at the level of (1.6) when looking at (\rho ,v,B\ast ). However, de will not be apparent in
our statements (which are uniform with respect to de) since they are formulated in
terms of (1.8)--(1.9). As usual, we denote by \scrF the Fourier transform and, for s \in \BbbR ,
by \scrH s := \scrF  - 1

\bigl( 
\langle \xi \rangle s\scrF L2

\bigr) 
the standard Sobolev--Bessel potential space (recall that

\langle \xi \rangle := (1 + | \xi | 2)1/2).

4The regime of geometric optics is weakly nonlinear with short pulses [7] at hand.
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4524 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

1.2. The incompressible situation. This entails looking at the pressure p :
\BbbR + \rightarrow \BbbR as a scalar function that plays the role of a Lagrange multiplier. This also
requires to start with initial data as in (1.10) with \rho 0 = 0 as well as

\nabla \cdot v0 = 0 , \nabla \cdot B\ast 
0 = 0 .(1.13)

Equivalently (see subsection 2.1), the incompressible situation implies the following:
(i) The density \rho is a positive constant, say (without limiting the generality)

\rho = \=\rho = 1 .(1.14)

(ii) All the vector fields v, B\ast , and B belong to \scrD s :=
\bigl\{ 
D \in \scrH s(\BbbR 3;\BbbR 3) ; \nabla \cdot D=

0
\bigr\} 
. In other words, they are solenoidal:

\nabla \cdot v= 0 , \nabla \cdot B\ast = 0 , \nabla \cdot B = 0 .(1.15)

(iii) The set (1.8) of equations reduces to

\biggl\{ 
\partial tv+ (v \cdot \nabla )v+\nabla p+B\ast \times (\nabla \times B) = 0 ,
\partial tB

\ast +\nabla \times 
\bigl( 
B\ast \times (v - d\nabla \times B)

\bigr) 
+\nabla \times 

\bigl( 
(\nabla \times v)\times (\nabla \times B)

\bigr) 
= 0 .

(1.16)

(iv) The constitutive relation is replaced by

B = (Id - \Delta ) - 1B\ast .(1.17)

Theorem 1 (local smooth wellposedness for incompressible XMHD). Fix the
initial data such that

(v,B\ast )(0, \cdot ) = (v0,B
\ast 
0)\in \scrD s(\BbbR 3;\BbbR 3)\times \scrD s - 1(\BbbR 3;\BbbR 3) , s > 5/2 .(1.18)

Then we can find some time T > 0 depending only on the \scrH s\times \scrH s - 1-norm of (v0,B
\ast 
0)

such that the Cauchy problem built with (1.15)--(1.16)--(1.17) together with the initial
condition (1.18) has a unique local solution on [0, T ], which is smooth in the following
sense:

(v,B\ast ,B)\in C
\bigl( 
[0, T ];\scrD s(\BbbR 3;\BbbR 3)\times \scrD s - 1(\BbbR 3;\BbbR 3)\times \scrD s+1(\BbbR 3;\BbbR 3)

\bigr) 
.(1.19)

In (1.19), the level\scrH s of regularity for v does not match the one\scrH s - 1 obtained for
the dynamical variable B\ast . This is because the presentation (1.16), though inherited
from physics, is not suitable from the perspective of initial value problems. This
explains probably why things have not yet worked in this way. To remedy this, we
transform in section 2 the equations of (1.16). More precisely, we incorporate a new
equation on the vorticity w :=\nabla \times v in order to obtain a system on (w,B\ast ) called the
vorticity formulation. Then we derive energy estimates up to the proof of Theorem 1
(for s > 7/2).

1.3. The compressible framework. We present below our result concerning
(1.8)--(1.9). As a prerequisite, we assume a barotropic equation of state. In other
words, the pressure p is only a function of the density \rho . It is prescribed by a smooth
given function p :\BbbR + \rightarrow \BbbR whose derivative p\prime is positive.
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EXTENDED MAGNETOHYDRODYNAMICS 4525

Theorem 2 (local smooth wellposedness for compressible XMHD). Assume that
\nu > 0, and fix any s > 5/2. Select some initial data as in (1.10)--(1.11), with, moreover,

(\rho 0, v0,B
\ast 
0)\in \scrH s(\BbbR 3;\BbbR )\times \scrH s(\BbbR 3;\BbbR 3)\times \scrH s - 1(\BbbR 3;\BbbR 3) , \nabla \cdot B\ast 

0 \in \scrH s(\BbbR 3;\BbbR 3) .

(1.20)

Then we can find some time T > 0 which is proportional to the parameter \nu and
inversely proportional to the \scrH s \times \scrH s \times \scrH s - 1 \times \scrH s-norm of (\rho 0, v0,B

\ast 
0 ,\nabla \cdot B\ast 

0) such
that the Cauchy problem built with (1.8)--(1.9) together with (1.10)--(1.11)--(1.20) has
a unique local solution on [0, T ], which is smooth in the following sense:

(\rho , v,B\ast ,B)\in C
\bigl( 
[0, T ];\scrH s(\BbbR 3;\BbbR )\times \scrH s(\BbbR 3;\BbbR 3)\times \scrH s - 1(\BbbR 3;\BbbR 3)\times \scrH s+1(\BbbR 3;\BbbR 3)

\bigr) 
.

(1.21)

Let us suppose, as is often the case in practice, that 0 < de \leq di \ll 1. Then
our analysis indicates that the system (1.6) involves a mix of three interconnected
regimes:

-- For low frequencies | \xi | \lesssim 1, the solutions behave (approximately) as provided
for by compressible magnetohydrodynamics [5, 33, 41].

-- For intermediate frequencies d - 1
i \lesssim | \xi | \ll d - 1

e , the Hall effects come into play
[9, 13, 30, 28, 44], and various amplification mechanisms get implemented.
This includes a step towards the singularity formations detected by mathe-
maticians [10, 23] and the tearing modes studied by physicists [16, 18] in the
perspective of collisionless magnetic reconnection. However, in the weakly
nonlinear regime (1.12) and as long as the time remains finite, these instabil-
ities do not induce the explosion (of norms) and they do not jeopardize the
construction of solutions.

-- For large frequencies d - 1
e \lesssim | \xi | , inertial aspects take place and new speeds

(modes) of propagation appear. This means the emergence of inertial waves
(see section 2.3.2), whose impacts have already been observed by physicists
[3, 38] but which do not seem to have been mathematically well identified
before.

It should be borne in mind that Theorem 1 is more accessible than Theorem 2.
To some extent, it can be viewed as a simplified version of it. This is why the analysis
begins in section 2 with completing the incompressible situation. This makes the
basic ideas more accessible. This also furnishes clear guidelines in the perspective of
the compressible framework which is investigated in section 3.

Section 3 follows the same steps as in section 2, but it faces new challenges:
-- On the one hand, in comparison with (1.17), due to the variations of \rho , it is
more difficult to exhibit the properties of (partial) ellipticity which are hidden
behind the constitutive relation (1.9); see subsection 3.1.

-- On the other hand, the incompressible transformation must be adapted to the
compressible framework; see subsection 3.2. We still add the vorticity w =
\nabla \times v. Besides, we implement the divergence \nabla \cdot v and one order derivatives of
\rho . The system thus obtained is called the compressible vorticity formulation.

-- In subsection 3.3, we remark that the divergence of B\ast is a preserved quan-
tity. Taking advantage of this information, we show that there is no loss of
hyperbolicity and that energy estimates become available. This is the entry
point to the proof of Theorem 2 (at least for s > 7/2).

Another salient point should be reported. When dealing in space dimension d= 3
with Sobolev solutions to quasilinear systems, the restriction s  - 1 > 1 + (d/2) =
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4526 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

5/2 (or equivalently s > 7/2) on the component B\ast would be expected [33, 41]. In
Theorems 1 and 2, observe the presence of the relaxed condition B\ast \in \scrH (3/2)+ instead
of the usual constraint B\ast \in \scrH (5/2)+. There is a gain of one degree of regularity
which is justified in section 4. To this end, instead of looking at derivatives of (\rho , v),
we integrate the magnetic field B\ast . As a matter of fact, we consider the magnetic
potential A\ast which is such that \nabla \times A\ast = B\ast and \nabla \cdot A\ast = 0. This leads to the
potential formulation.

The potential formulation furnishes a self-contained system on (\rho , v,A\ast ), which
can be studied independently and which furnishes different types of supplementary
information. This corresponds to the most completed approach but also in some
aspects to the most challenging. This is why it is explained last. In fact, the potential
formulation falls (modulo adaptations) under the scope of the Kawashima--Shizuta
theory [25]. This leads to the optimal regularity results (with s > 5/2) stated in
Theorems 1 and 2.

Section 5 exhibits the various types of inertial waves that can arise and studies
their properties. To this end, we first select special solutions (constant, in the form of
Beltrami fields, corresponding to null point configurations, two dimensional, or even
moving). Then we look at the associated linearized equations and we focus on the
regime of high frequencies (with d - 1

e \lesssim | \xi | ). In this way, we can highlight the presence
of inertial dispersion relations, which are of particular interest.

There is a short appendix (Appendix A). It is about the div-curl system which
appears repeatedly throughout the text.

Given a state variable U , we often employ the notation U \star 
\diamond . The superscript

 \star \in \{ i, c\} is used to indicate that U is related, respectively, to the incompressible
and compressible situations. The subscript \diamond \in \{ v,p\} (where v and p must not be
confused with the velocity v and the pressure p) refers to the vorticity and potential
formulations. We reserve the rsfs font P for operators, with a symbol denoted by
the standard font P , so that P = P (Dx). We often put the subscript \ast \in \BbbZ to specify
that P \star 

\ast = P  \star 
\ast (Dx) is of (maximal) order \ast , while the superscript  \star \in \{ i, c\} may still

be incorporated for the same reasons as before.

2. The incompressible situation. In subsection 2.1, we introduce the incom-
pressible equations and some of its principal features. In subsection 2.2, we exhibit
properties of ellipticity lying behind (1.17). In subsection 2.3, we perform a depen-
dent change of unknowns which transforms (1.16). In subsection 2.4, we derive energy
estimates in order to show Theorem 1.

2.1. The incompressible equations. The incompressible situation is strongly
linked to the system (1.8)--(1.9) of origin. To see how, starting from (1.8)--(1.9), we
have to deduce (1.14), (1.15), (1.16), and (1.17). To this end, we consider below
successively the indents (i), . . . , (iv) of subsection 1.2.

(i) Since \nabla \cdot v= 0, the first equation of (1.8) implies that the density \rho is just ad-
vected along the characteristic curves generated by the vector field v. Hence,
it remains constant, say \rho = \=\rho = 1, if initially \rho 0 = 0.

(ii) As already explained, the term \nabla p plays the role of a Lagrange multiplier
which ensures the propagation of the constraint \nabla \cdot v= 0. On the other hand,
it is clear that the divergence-free condition imposed inside (1.13) on B\ast at
time t= 0 is propagated via the divergence of the third equation of (1.8) and
that it is transmitted to B through (1.9).

(iii) We can always incorporate the part | \nabla \times B| 2/2\rho 2 to the function p. Then,
knowing that \rho = 1 and \nabla \cdot v = 0, the system (1.8) is exactly the same as
(1.16).
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EXTENDED MAGNETOHYDRODYNAMICS 4527

(iv) The link between B and B\ast is here simplified into B\ast = B +\nabla \times (\nabla \times B).
Now, since \nabla \cdot B = 0, we have \nabla \times (\nabla \times B) =  - \Delta B. After inversion, this
yields (1.17).

Before proceeding, we remark that there is a conserved quantity which may be
expressed in terms of (v,B).

Lemma 3 (a conserved quantity). incompressible XMHD preserves the energy

\scrE i :=
1

2

\int 
\BbbR 3

\bigl( 
| v| 2 + | B| 2 + | \nabla \times B| 2

\bigr) 
dx .(2.1)

Proof. Take the L2-scalar product of the first equation of (1.16) with v. Using
integration by parts and the condition \nabla \cdot v= 0, all terms vanish except B\ast \times (\nabla \times B)
giving

d

dt

\biggl( 
1

2

\int 
\BbbR 3

| v| 2 dx
\biggr) 
+

\int 
\BbbR 3

v \cdot 
\bigl( 
B\ast \times (\nabla \times B)

\bigr) 
dx= 0 .(2.2)

Take the L2-scalar product of the second equation of (1.16) with B (but not B\ast ).
Perform integration by parts (or exploit that the curl operator is self-adjoint) to see
that the two triple products vanish. There remains

d

dt

\biggl( 
1

2

\int 
\BbbR 3

\bigl( 
| B| 2 + | \nabla \times B| 2

\bigr) 
dx

\biggr) 
+

\int 
\BbbR 3

(\nabla \times B) \cdot (B\ast \times v)dx= 0 .(2.3)

Summing (2.2) and (2.3), we obtain that d\scrE i/dt= 0 as expected.

Remark 4 (similarities with Leray--\alpha models). Incompressible XMHD equations
may bear some resemblance to Lagrangian averaged (or Leray--\alpha ) Euler equations
[20, 35, 36], where a parameter \alpha is introduced and represents the spatial scale below
which the dynamics are averaged. But if the parameter de can be seen (to some
extent) as playing the part of \alpha in Lagrangian averaged \alpha --models, its introduction is
driven by other considerations related to two-fluid models [17, 22] and its handling is
completely different.

We also come back to the introduction of d and its significance.

Remark 5 (comparison of electron and ion skin depths). Let \omega pi and \omega pe be the
ion and electron plasma frequencies. Under quasi neutrality (when qi ni  - ene = 0),
the ratio between di and de can be expressed in terms of plasma parameters according
to

d=
di
de

=
\omega pe

\omega pi
\simeq 42,72

\surd 
ne\surd 
ni

\surd 
\mu 

Z
\simeq 42,72

\surd 
\mu 

\surd 
Z

,

where ni and ne are the number densities of ions and electrons, \mu =mi/mp is the ion
mass (expressed in units of the proton mass), and Z = qi/e equals the atomic number.
In a plasma composed only of electrons and protons (where \mu = 1 and qi = e so that
Z = 1), we find that d \simeq 40. For mixtures of ions and electrons (because \mu becomes
in general much larger due to the presence of neutrons while Z remains small), we
may find that 1\ll d. However, we emphasize that the two parameters de and di are
completely independent. We refer the reader to the paragraph ``Inertial MHD"" in [31,
p. 2402] for a rapid discussion about typical values of di and de.
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2.2. The incompressible constitutive relation. The operator

\nabla \times \nabla \times :\scrH 2(\BbbR 3;\BbbR 3)\rightarrow L2(\BbbR 3;\BbbR 3)

is not elliptic of order 2, since it has a nonzero kernel. To avoid this difficulty, it
suffices to restrict its action on a suitable subspace.

Lemma 6 (underlying ellipticity when passing from B\ast to B through the relation
(1.17)). The differential operator

L i
2 := Id +\nabla \times \nabla \times :\scrD s \rightarrow \scrD s - 2 , s\in \BbbR ,(2.4)

is bijective and elliptic of order 2. Its inverse (L i
2)

 - 1 :\scrD s - 2 \rightarrow \scrD s takes the form of
a Fourier multiplier which is elliptic of order  - 2.

Proof. Let
\bigl( 
e1(\xi ), e2(\xi ), e3(\xi )

\bigr) 
be a smooth orthonormal frame on \BbbR 3 \setminus \{ 0\} which

is adjusted such that e1(\xi ) = \xi /| \xi | . Let O0(\xi ) be the orthogonal matrix whose column
vectors are e1(\xi ), e2(\xi ), and e3(\xi ). In other words,

O0(\xi ) :=
\bigl( 
e1(\xi ), e2(\xi ), e3(\xi )

\bigr) 
, e1(\xi ) = \xi /| \xi | , ei(\xi ) \cdot ej(\xi ) = \delta ij .(2.5)

Since \xi \times e1(\xi ) = 0 whereas \xi \times \xi \times ej(\xi ) = - | \xi | 2 ej(\xi ) for j \in \{ 2,3\} , we have

\scrF (Id +\nabla \times \nabla \times )\scrF  - 1 =O0(\xi )D
i
2(\xi )O0(\xi )

 - 1, Di
2(\xi ) :=

\left(  1 0 0
0 \langle \xi \rangle 2 0
0 0 \langle \xi \rangle 2

\right)  .

(2.6)

In other words, the action of Id +\nabla \times \nabla \times on the whole space \scrH 2(\BbbR 3;\BbbR 3) is unitary
equivalent through a conjugation by O0 := O0(Dx) to the diagonal operator D i

2 :=
Di

2(Dx). Introduce the L2-projectors P and Q, where Q := Id - P and P = P (Dx)
is given by the Leray projector whose matrix valued symbol is given by

P (\xi )v :=
\bigl( 
e2(\xi ) \cdot v

\bigr) 
e2(\xi ) +

\bigl( 
e3(\xi ) \cdot v

\bigr) 
e3(\xi ) .(2.7)

Recall that the operator L i
2 is defined by the restriction of its action to \scrD s, while the

set \scrD s may be characterized by

\scrD s :=P \scrH s(\BbbR 3;\BbbR 3) .(2.8)

This implies that L i
2 does not see the eigenvalue 1 of Di

2(\xi ). It just acts on the Fourier
side according to the multiplier

\scrF L i
2 \scrF  - 1 =

\bigl( 
\scrF (Id +\nabla \times \nabla \times )\scrF  - 1

\bigr) 
| \scrF \scrD s \equiv \langle \xi \rangle 2 Id , L i

2 \equiv Id - \Delta ,(2.9)

which is bijective and elliptic of order 2. From (2.9), we infer that

\scrF (L i
2)

 - 1\scrF  - 1 = \langle \xi \rangle  - 2 Id , (L i
2)

 - 1 \equiv (Id - \Delta ) - 1 .

This clearly confirms that resorting to (L i
2)

 - 1 allows us to gain two derivatives.

With the above convention, we can deduce from (1.17) the incompressible consti-
tutive relation

\nabla \times B =K i
 - 1B

\ast , K i
 - 1 := (L i

2)
 - 1\nabla \times \equiv K i

 - 1P .(2.10)

This relation and Lemma 6 are essential because they allow us to interpret all terms
implying \nabla \times B inside (1.16) as acting on B\ast like operators of order  - 1 (instead of 1
when de = 0). This means that the expressions B and B\ast do not play similar roles.
At the same time, this invites us to reconsider the hierarchy of terms when looking
at (1.16). With this in mind, in the next subsection, we apply the curl operator on
the first equation of (1.16).
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EXTENDED MAGNETOHYDRODYNAMICS 4529

2.3. Transformation of the incompressible equations. The purpose of this
subsection is twofold. First, in subsection 2.3.1, we exploit (1.15) and (1.17) in order
to recast (1.16). Second, in subsection 2.3.2, we give a concrete meaning to the notion
of inertial waves.

2.3.1. The incompressible vorticity formulation. The point is to imple-
ment the vorticity w := \nabla \times v as a new unknown. From (A.2) and (A.3), we can
extract a derived system on U i

v := (w,B\ast ), which is\biggl\{ 
\partial tw+ (v \cdot \nabla )w+ (K i

 - 1B
\ast \cdot \nabla )B\ast =S iw

v0 U i
v ,

\partial tB
\ast +

\bigl( 
(v - dK i

 - 1B
\ast ) \cdot \nabla 

\bigr) 
B\ast +

\bigl( 
K i

 - 1B
\ast \cdot \nabla 

\bigr) 
w=S iB\ast 

v0 U i
v .

(2.11)

In (2.11), the velocity v must be deduced from w through the Biot--Savart law (A.5),
while the operator S i

v0 = (S iw
v0 ,S

iB\ast 

v0 ) is given by

S iw
v0 U i

v := (B\ast \cdot \nabla )K i
 - 1B

\ast +
3\sum 

i=1

wi \scrM i
i(w) ,

S iB\ast 

v0 U i
v := - d (B\ast \cdot \nabla )(K i

 - 1B
\ast ) + (w \cdot \nabla )(K i

 - 1B
\ast ) +

3\sum 
i=1

B\ast 
i \scrM i

i(w) ,

with \scrM i
i defined as in Lemma 23. By combining Lemmas 6 and 23, we obtain that

S i
v0 is a (nonlinear) pseudo-differential operator of order zero. Hence, it can be viewed

as a source term. Observe that B has disappeared from (2.11). There is no longer
any need for (1.17), whereas (1.15) becomes

\nabla \cdot w= 0 , \nabla \cdot B\ast = 0 .(2.12)

For 0< de \ll 1, the inertial modifications appear at the level of (1.6) as perturbative
terms. As such, the impact of inertial terms could seem to be marginal. But this is
not so:

-- At high frequencies (for | \xi | \geq 1/de), as suggested by (1.8), the inertial contri-
butions compete with the other influences.

-- The constitutive relation (1.5) induces (through Lemma 6) a complete re-
ordering of the unknowns. The change is brutal from de = 0 to de > 0. Once
de > 0, the terms which manage in standard MHD the Alfven and magne-
tosonic waves are relegated inside the source term S i

v0U
i
v, where they play

the role of zero order contributions. Still, they participate to lower order
dispersive effects.

-- In XMHD, new terms become predominant. Emphasis is given to the sym-
metric part which, in the left part of (2.11), involves K i

 - 1.
In other words, the passage from (1.6) to (1.8), and especially from (1.8) to (2.11),

is very singular (there is no smooth transition from de = 0 to de > 0). It makes the
(hidden) hyperbolic structure of XMHD appear. The consequence in terms of the
occurrence and organization of waves is as explained just after Theorem 2.

Remark 7 (energy spectra). In [3, 38], using a Kolmogorov-like analysis and
hypotheses (regarding the energy and helicity cascades), the authors obtain the energy
spectra of XMHD in different (ideal, Hall, and inertial) regimes. This study confirms
that many types of waves overlap in XMHD, while inertial features can overtake at
high frequencies.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

5/
25

 to
 1

92
.5

4.
17

6.
19

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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2.3.2. Inertial waves. Excluding for the moment the coupling induced by the
source terms and assuming that di = 0 (so that d= 0), the system (2.11) reduces to\biggl\{ 

\partial tw+ (v \cdot \nabla )w+ (K i
 - 1B

\ast \cdot \nabla )B\ast = 0 ,

\partial tB
\ast + (v \cdot \nabla 

\bigr) 
B\ast +

\bigl( 
K i

 - 1B
\ast \cdot \nabla 

\bigr) 
w= 0 .

(2.13)

Noting that B0
\pm := B\ast \pm w, this is the same as a nonlinear coupled system of two

transport equations, namely

\partial tB
0
\pm + (v \cdot \nabla )B0

\pm \pm 1

2

\bigl( 
K i

 - 1 (B
0
+ +B0

 - ) \cdot \nabla 
\bigr) 
B0

\pm = 0 .

We can immediately recognize two distinct eigenvalues (which provide a first access
to inertial waves), each of multiplicity 3, which are

\lambda \pm \equiv \lambda \pm (v,B
0
+,B

0
 - , \xi ) := v \cdot \xi \pm 1

2
K i

 - 1 (B
0
+ +B0

 - ) \cdot \xi .(2.14)

These eigenvalues \lambda \pm are formally genuinely nonlinear in the sense that

( \~B0
\pm \cdot \nabla B0

\pm 
)\lambda \pm (v,B

0
+,B

0
 - , \xi ) =\pm 1

2
K i

 - 1
\~B0
\pm \cdot \xi \not \equiv 0 .

It turns out that the above elementary diagonalization procedure can be generalized
to the whole system. Indeed, with

Bd
\pm :=B\ast + \kappa d

\pm \nabla \times v , vd\pm := v - \kappa d
\mp \nabla \times B , \kappa d

\pm :=
1

2

\Bigl( 
d\pm 

\sqrt{} 
d2 + 4

\Bigr) 
,

(2.15)

the incompressible XMHD equations (1.16) can be recast as

\partial tB
d
\pm +\nabla \times (Bd

\pm \times vd\pm ) = 0 .(2.16)

The formulation (2.15)--(2.16) is implicit in [3, 31]. From (2.15), following the preced-
ing lines, we can extract

vd\pm =\nabla \times ( - \Delta ) - 1

\biggl( 
Bd

+  - Bd
 - 

\kappa d
+  - \kappa d

 - 

\biggr) 
 - \kappa d

\mp \nabla \times (1 - \Delta ) - 1

\biggl( 
\kappa d
+Bd

 -  - \kappa d
 - Bd

+

\kappa d
+  - \kappa d

 - 

\biggr) 
.(2.17)

In other words, incompressible XMHD can also be seen as two incompressible trans-
port equations on Bd

\pm with velocities vd\pm , where the latter are given in terms of Bd
\pm 

by the generalized Biot--Savart-type laws (2.17). The unknowns Bd
\pm =B\ast + \kappa d

\pm w are
made of adequate linear combinations of B\ast and w, together with a link to v and
therefore v\pm (in order to close the system). As in (2.11), the unknowns are in fact
the components of U i

v. As in (2.11), the system (2.16) completed with (2.17) is a
quasi-linear symmetric system both of whose coefficients and source terms take the
form of zero order pseudo-differential operators. Working with (2.13) or (2.16) are
two equivalent options. In this text, we select the approach through (2.13).

Select some special solution ( \=w, \=B\ast ) to the system (2.13). We can consider the
(one order part of the) linearized equations along ( \=w, \=B\ast ) associated with (2.11), which
are \biggl\{ 

\partial t \.w+ (\=v \cdot \nabla ) \.w+ (K i
 - 1

\=B\ast \cdot \nabla ) \.B\ast = 0 ,

\partial t \.B
\ast +

\bigl( 
(\=v - dK i

 - 1
\=B\ast ) \cdot \nabla 

\bigr) 
\.B\ast +

\bigl( 
K i

 - 1
\=B\ast \cdot \nabla 

\bigr) 
\.w= 0 .

(2.18)
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EXTENDED MAGNETOHYDRODYNAMICS 4531

Definition 8. The inertial waves (related to the choice of \=w and \=B\ast ) are carried
by the two eigenvalues \lambda \pm (\xi ), each with multiplicity 3 of the linear hyperbolic system
(2.18), namely

\lambda \pm \equiv \lambda \pm (\xi ) := v \cdot \xi  - \kappa d
\pm (K i

 - 1
\=B\ast ) \cdot \xi , \kappa d

\pm :=
1

2

\bigl( 
d\pm 

\sqrt{} 
d2 + 4

\bigr) 
.(2.19)

To observe experimentally inertial waves, two conditions must be fulfilled:
-- The plasma must be sufficiently energetic to trigger high frequencies | \xi | \geq 
1/de.

-- The data must be expressed in terms of w and B\ast (or even better Bd
\pm ).

Indeed, information collected just in terms of v could be difficult to interpret.

2.4. Proof of Theorem 1. We start by showing Theorem 1 under the more
restrictive regularity assumption s > 7/2. We refer the reader to section 4 for the
optimal result. In particular, at time t= 0, we know that (with \~s := s - 1)

U i
v(0, \cdot ) =U i

v0 = (w0,B
\ast 
0)\in \scrD \~s(\BbbR 3;\BbbR 3)3 , w0 :=\nabla \times v0 , \~s > 5/2 .(2.20)

Any smooth solution to (1.15)--(1.16)--(1.17)--(1.18) leads to a solution to (2.11)--
(2.12)--(2.20), and conversely. We study below the time evolution of the L2-norm
of U i

v (assuming for the moment that U i
v is bounded in the large \scrH \~s-norm).

Lemma 9 (L2-energy estimate for the incompressible vorticity formulation). Let
T > 0. Assume that the function U i

v \in C([0, T ];\scrD \~s) with \~s > 5/2 is a solution to
(2.11) with initial data (2.20). Then we can find a constant C depending only on the
C([0, T ];\scrH \~s)-norm of U i

v such that

\| U i
v(t, \cdot ) \| L2\leq \| U i

v0 \| L2 eC t \forall t\in [0, T ] .(2.21)

Proof. Multiply the first and second equations of (2.11), respectively, by w and
B\ast , and then integrate with respect to x. Since v \in \scrD \~s, the contributions issued from
the (transport) diagonal part involving v \cdot \nabla disappear. After integration by parts,
there remains

1

2

d

dt

\biggl( \int 
\BbbR 3

| U i
v(t, \cdot )| 2 dx

\biggr) 
= - d

2

\int 
\BbbR 3

\nabla \cdot 
\bigl( 
K i

 - 1B
\ast \bigr) | B\ast | 2 dx

+

\int 
\BbbR 3

\nabla \cdot 
\bigl( 
K i

 - 1B
\ast \bigr) (w \cdot B\ast ) dx+

\int 
\BbbR 3

U i
v \cdot S i

v0U
i
v dx .

The Fourier multiplier (L i
2)

 - 1 commutes with \nabla \cdot , while \nabla \cdot \nabla \times \equiv 0. Thus,

1

2

d

dt

\biggl( \int 
\BbbR 3

| U i
v(t, \cdot )| 2 dx

\biggr) 
=

\int 
\BbbR 3

U i
v \cdot S i

v0U
i
v dx .

Below, we use the Sobolev embedding theorem \scrH \~s \lhook \rightarrow L\infty (knowing that \~s > 5/2).
We exploit the condition \nabla \cdot v = 0 to deal with the sum of products wi \scrM i

i(w). We
also implement Lemmas 6 and 23 to get\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 3

w \cdot S iw
v0 U

i
v dx

\bigm| \bigm| \bigm| \bigm| \leq \| w \| L\infty 

3\sum 
i=1

\bigl( 
\| B\ast 

i \| L2 \| \partial iK i
 - 1B

\ast \| L2 + \| wi \| L2 \| \scrM i
i(w) \| L2

\bigr) 
\lesssim \| U i

v \| C([0,T ];\scrH \~s) \| U i
v \| 2L2 ,
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4532 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

as well as\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

B\ast \cdot S iB\ast 

v0 U i
v dx

\bigm| \bigm| \bigm| \bigm| 
\leq d \| B\ast \| L\infty 

3\sum 
i=1

\| B\ast 
i \| L2 \| \partial iK i

 - 1B
\ast \| L2

+ \| B\ast \| L\infty 

3\sum 
i=1

\bigl( 
\| wi \| L2 \| \partial iK i

 - 1B
\ast \| L2 + \| B\ast 

i \| L2 \| \scrM i
i(w) \| L2

\bigr) 
\lesssim \| U i

v \| C([0,T ];\scrH \~s) \| U i
v \| 2L2 .

By Gr\"onwall's inequality, we recover (2.21).

The proof of Lemma 9 serves to confirm that the source term is indeed of order 0.
To go further, we have to write down a scheme [6, 33] in order to use a fixed-point
method. To this end, we need to implement the linearized version of (2.11). Then
we have to perform energy estimates in order to obtain a control in the large norm
L\infty ([0, T ];\scrH \~s) and a convergence in the small norm L\infty ([0, T ];L2).

When doing this, the coefficients (which are transparent in the above proof) are
implied. The only difficulty could come from the operator (K i

 - 1B
\ast ) \cdot \nabla , but the

coefficient K i
 - 1B

\ast is of order 0 (and even of order  - 1) as required. Thus, L2-energy
estimates are available for the linearized equations along the same lines as above.

To get \scrH \~s-bounds, we have to commute the linearized equation with spatial de-
rivatives \partial \alpha 

x with | \alpha | \leq \~s and exploit linear estimates of nonlinear functions. This
falls under the scope of the general strategy [6, 33] to solve quasi-linear symmetric
systems. The details, which are standard and long, are not reproduced here. The
conclusion is that the Cauchy problem associated with (2.11) is well-posed in \scrH \~s for
\~s > 5/2.

From the \scrH \~s-solutions to (2.11) with \~s > 5/2, we recover solutions to (1.16),
which are such that (v,B\ast )(t, \cdot ) \in \scrH s \times \scrH s - 1 with s := \~s+ 1 > 7/2. Moreover, from
Lemma 6 together with (2.10), we obtain that B(t, \cdot ) \in \scrH s+1. This concludes the
proof of Theorem 1, at least on the condition that s > 7/2.

Remark 10 (propagated L2-energy for (2.11) versus conserved quantity for (1.16)).
From Lemma 6, we know that \| \nabla \times B \| L2=\| K i

 - 1B
\ast \| L2\lesssim \| B\ast \| L2 . It is clear that,

with \scrE i as in (2.1), we have \scrE i \lesssim \| U i
v \| L2 . The opposite is false. In other words,

Lemma 9 is not a corollary of Lemma 3.

3. The compressible framework. In this section, p :\BbbR + \rightarrow \BbbR is a given strictly
increasing smooth function of \rho . We extend here (1.18) by putting aside the condition
\nabla \cdot B\ast 

0 = 0. As a matter of fact, we consider general vector fields B\ast . This is made
possible by the following remark.

Lemma 11 (conservation of the magnetic divergence). Any solution to (1.8)--
(1.9)--(1.10) is such that

\nabla \cdot B\ast =\nabla \cdot B =\nabla \cdot B\ast 
0 .(3.1)

Proof. This is just because \partial t(\nabla \cdot B\ast ) = 0.

The whole vector field B\ast (resp., B) can be reconstituted from \nabla \cdot B\ast and \nabla \times B\ast 

(resp., from \nabla \cdot B and \nabla \times B) by solving the div-curl system (see Appendix A.2).
The parts \nabla \cdot B\ast and \nabla \cdot B are determined by (3.1). In particular, with P = P (Dx),
where P is as in (2.7), retain that
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EXTENDED MAGNETOHYDRODYNAMICS 4533

B\ast =QB\ast 
0 +P B\ast , Q = Id - P .(3.2)

In other words, replacing B\ast everywhere as indicated above, the system (1.8) re-
duces to an equation on (\rho , v,PB\ast ), while the constitutive relation (1.9) is aimed at
deducing PB from PB\ast , or equivalently \nabla \times B from \nabla \times B\ast .

Lemma 11 is straightforward. It is, however, highlighted because it plays a crucial
role for the reason explained in the remark below.

Remark 12 (a consequence of the foliation by vector fields having a fixed diver-
gence). Let C be a smooth vector field viewed as a coefficient. From (A.2), we have
the decomposition

TC B\ast \equiv T B\ast :=\nabla \times (C \times B\ast ) =T1B
\ast +T0B

\ast (3.3)

with

T1B
\ast := (\nabla \cdot B\ast ) C  - (C \cdot \nabla )B\ast , T0B

\ast := (B\ast \cdot \nabla )C  - (\nabla \cdot C) B\ast .(3.4)

The operator T0 is of order 0, while T1 is of order 1. The action of T1 is not skew-
adjoint. As such, it is not compatible with energy estimates. However, knowing (3.1),
we should opt for T B\ast = \~T1B

\ast + \~T0B
\ast with

\~T1B
\ast := - (C \cdot \nabla )B\ast , \~T0B

\ast := (\nabla \cdot B\ast 
0) C + (B\ast \cdot \nabla )C  - (\nabla \cdot C) B\ast .(3.5)

The operator \~T1 is skew-adjoint. Contrary to T1, it can be dealt with in the energy
estimates without losses of derivatives. This trick will be repeatedly used. As a matter
of fact, we will systematically replace \nabla \cdot B\ast by \nabla \cdot B\ast 

0 .

In order to make the transition from \nabla \times B\ast to \nabla \times B, we have to exploit con-
veniently the constitutive relation (1.9). To this end, we follow a plan similar to
section 2. In subsection 3.1, we come back to the content of (1.9) but this time when
\rho is a nonconstant function. In subsection 3.2, we adapt to the compressible context
the change of variables of subsection 2.3. In subsection 3.3, we derive energy estimates
to show Theorem 2 (for s > 7/2). At each stage, in comparison with section 2, we
need to implement important and difficult modifications.

3.1. The compressible constitutive relation. The difficulty here is to exploit
(1.9) in order to express PB in terms of PB\ast . In this subsection, we fix a time
t \in \BbbR +, and we assume that the function \rho (t, \cdot ) : \BbbR 3 \rightarrow \BbbR is bounded and positive.
More precisely, we impose

\exists (c,C)\in \BbbR 2 ; 0< c\leq \rho (t, x)\leq C \forall x\in \BbbR 3 .(3.6)

We also suppose that the function \rho (t, \cdot ) is smooth enough, say in \scrH s(\BbbR 3) with s >
7/2. In this way, we can use the pseudo-differential calculus with coefficients in
\scrH s, as developed, for instance, in [34, 42]. In what follows, we will sometimes omit
mentioning the presence of t. From (1.9), we get that

\nabla \times B\ast =L c
2

\biggl( 
\nabla \times B

\rho (x)

\biggr) 
, L c

2 := \rho (x) Id +\nabla \times \nabla \times .(3.7)

We look at L c
2 :L2(\BbbR 3;\BbbR 3)\rightarrow L2(\BbbR 3;\BbbR 3) as an unbounded operator [12].

Lemma 13 (inverse of L c
2 ). The operator (L c

2 )
 - 1 : L2 \rightarrow L2 is well-defined and

bounded.
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4534 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

Proof. Observe that L c
2 is symmetric and positive since\int 

(L c
2 u)(x) \cdot \=u(x) dx=

\int 
\rho (x) | u(x)| 2 dx

+

\int 
| \nabla \times u(x)| 2 dx\geq c \| u \| 2L2 \forall u\in \scrH 2 .

(3.8)

The polar decomposition furnishes the existence of a densely defined, closed, and self-
adjoint operator X c : L2 \rightarrow L2 with domain Dom(X c) such that L c

2 = (X c)\ast X c,
and therefore

\| X c u \| L2\geq 
\surd 
c \| u \| L2 \forall u\in Dom(X c) ,

\| (X c)\ast u \| L2\geq 
\surd 
c \| u \| L2 \forall u\in Dom

\bigl( 
(X c)\ast 

\bigr) 
.

Starting from there, the two operators X c and (X c)\ast are invertible (Theorem 3.3.2 in
[15], or see also [12]). The same applies to L c

2 with (L c
2 )

 - 1 = (X c) - 1 \circ \bigl( 
(X c)\ast 

\bigr)  - 1
.

For smooth enough vector fields B\ast , the relation (3.7) amounts to the same thing
as

\nabla \times B

\rho (x)
=K c

 - 1B
\ast , K c

 - 1 := (L c
2 )

 - 1\nabla \times \equiv K c
 - 1P .(3.9)

The system (1.8) where \nabla \times B/\rho is replaced everywhere as indicated in (3.9) is enough
to recover a self-contained system on t(\rho , v,PB\ast ). We can progress without introduc-
ing B and without imposing \nabla \cdot B\ast = 0. Neither (1.9) nor (1.15) is needed. It suffices
to rely on (3.9). Still, the passage through (1.9) and (1.15), which is prescribed by
physicists, is meaningful. First, it is a way to deduce the final constitutive relation
(3.9). Second, it is more adapted in view of the potential formulation (in section 4).
Now one important key in continuity with Lemma 6 is to show that the restriction of
(L c

2 )
 - 1 to \scrD r (for well-chosen indices r) still gives rise to a gain of two derivatives.

In other words, we have to justify the subscript  - 1 in K c
 - 1.

Proposition 14 (a property of ellipticity when going from \nabla \times B\ast to \nabla \times B/\rho 
through the constitutive relation (3.9)). The action of (L c

2 )
 - 1 is associated with

a matrix valued operator, all of whose coefficients are pseudo-differential operators.
Its restriction to solenoidal vector fields is elliptic of order less than or equal to  - 2.
More precisely, for r \in [s - 2, s], the action (L c

2 )
 - 1 : \scrD r \rightarrow \scrH r+2 is well-defined and

continuous.

In comparison with Lemma 6, the variations of the function \rho induce modifica-
tions:
-- d1. First, unlike (L i

2)
 - 1, the image of (L c

2 )
 - 1 on \scrD r is not \scrD r+2. Indeed, since

\rho is not constant, the action of (L c
2 )

 - 1 implies a deformation out of the
set of solenoidal vector fields. This is restored as indicated in (3.9) after
multiplication by \rho . The transition from \nabla \times B\ast to \nabla \times B through (3.9) is
not diagonal; it is not so simple. In particular, the identity

\nabla \times B = \rho (x) ( \~L c
2 )

 - 1(\nabla \times B\ast ) , \~L c
2 :=

\bigl( 
\rho (x) - \Delta 

\bigr) 
Id3\times 3 ,(3.10)

which could appear, as the correct extrapolation of (1.17) is false.
-- d2. Second, there are restrictions on r which are absent (on s) at the level of (2.4).

On the one hand, the upper bound r \leq s comes from the limited regularity
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EXTENDED MAGNETOHYDRODYNAMICS 4535

of \rho . On the other hand, the lower bound s - 2 \leq r is issued from the rules
of composition in Sobolev spaces (in view of a paradifferential calculus). We
can further illustrate these two conditions by looking at the elliptic equation\bigl( 
\rho (x)  - \Delta 

\bigr) 
u = f , where u \in \scrH s - 1 and f \in \scrH r with r \in [s  - 2, s]. Then,

knowing that s > 7/2, from Theorem 1.2.A in [42], we obtain that u\in \scrH r+2.

Proof. The rest of subsection 3.1 is devoted to the proof of Proposition 14. To
overcome the difficulty d1, we must keep track of derivative losses concerning \rho . To
solve d2, we follow a procedure in three steps:

-- In section 3.1.1, we explain our method of unitary conjugation, and we intro-
duce preliminary tools like the Weyl quantization.

-- In section 3.1.2, we show by Weyl calculus that L c
2 is (almost) unitary equiv-

alent to a block diagonal action. In fact, the principal symbol of L c
2 has two

distinct eigenvalues: \rho (x) and \rho (x)+ | \xi | 2, which are respectively of multiplic-
ity one and two. The unitary reduction reveals a 2\times 2 elliptic block of order
2, corresponding to the second eigenvalue and involving (after inversion) a
gain of two derivatives. The difficulty is to show that this gain remains effec-
tive on \scrD r, while it could be destroyed by the variations of \rho . The presence
of a nonconstant function \rho produces nonzero commutators and in this way
nondiagonal terms. Along this line, note again that the relation (3.10) is not
verified.

-- In section 3.1.3, to remedy this, we construct an approximate parametrix,
and we check that its properties allow us to conclude.

3.1.1. Preparatory work. We denote byOP\scrH sSm the set of pseudo-differential
operators of order less than or equal to m with symbols in \scrH s (e.g., see [34, 42]), and
simply Op(m) an element of OP\scrH rSm (for some unspecified r = s - 1 or r = s). In
view of (3.8), the action of L c

2 is (at least) elliptic of order 0. Thus, to evaluate its
precise order, it suffices to consider what happens for large frequencies, that is, for
\xi with | \xi | \gg 1. The action of L c

2 is achieved through a matrix valued differential
operator, which is nondiagonal. In line with (2.5) and (2.6), a first attempt to obtain
a block diagonal form is to look at

O - 1
0 L c

2 O0 =Dc + E , E :=O - 1
0

\bigl[ 
\rho (x) Id,O0

\bigr] 
,

where Dc and E = E \ast are given by

Dc :=

\left(  \rho (x) 0 0
0 \rho (x) - \Delta 0
0 0 \rho (x) - \Delta 

\right)  , E =

\left(  E11 E12 E13

E \ast 
12 E22 E23

E \ast 
13 E \ast 

23 E33

\right)  .

It is clear that Dc \in OP\scrH sS2. Thus, in the absence of E , Proposition 14 would be a
direct consequence of Theorem 1.2.A in [42]. There remains to explain how to absorb
the above remainder E .

Denoting by O0ij =O0ij(Dx) the elements of the matrix valued pseudo-differential
operator O0 (which are all of order 0), we find that (e.g., see Corollary 4.1 in [6])

(E )ij =O - 1
0

\Bigl( \bigl[ 
\rho (x),O0ij

\bigr] \Bigr) 
ij
=O - 1

0

\Bigl( 
Op

\bigl( 
i\{ O0ij(\xi ), \rho (x)\} 

\bigr) \Bigr) 
ij
+Op( - 2) ,

where we have introduced the Poisson bracket, which is given in the phase space (x, \xi )
by

\{ f, g\} :=
3\sum 

i=1

\partial \xi if \partial xi
g - 

3\sum 
i=1

\partial xi
f \partial \xi ig .
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4536 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

We see in this formula that E \in OP\scrH s - 1S - 1. The above reduction is not yet sufficient
in order to conclude (due to the presence of nonzero coefficients E1 \star ). To (partially)
further absorb E , the idea is to find a unitary operator V such that

V \ast (Dc + E )V =Dc + Er +Op( - 4) , Er :=

\left(  E11 0 0
0 E22 E23

0 E \ast 
23 E33

\right)  = E \ast 
r .(3.11)

To this end, we seek V in the form V = eiA , where A is a self-adjoint pseudo-
differential operator with real valued symbol A. When doing this, to facilitate calcu-
lations, it is more appropriate to work with the Weyl quantization (with symbol A)
given by

A u(x)\equiv OpW (A)u(x) :=
1

(2\pi )3

\int 
\BbbR 3

\int 
\BbbR 3

ei(x - y)\cdot \xi A
\Bigl( x+ y

2
, \xi 
\Bigr) 
u(y)dy d\xi , u\in \scrD (\BbbR 3) .

We recall that any operator A having a real symbol A is self-adjoint, so that eiA is
a unitary pseudo-differential operator satisfying

eiA =

+\infty \sum 
k=0

ik

k!
A k = Id+ iA + \cdot \cdot \cdot , (eiA )\ast = e - iA .

When A is of negative order (m < 0), the above sum implements terms A k which
are of decreasing orders km. For instance, the above remainder (marked by \cdot \cdot \cdot ) is in
Op(2m).

3.1.2. Unitary reduction. Assume that A = (Aij)ij is a self-adjoint operator
of negative order  - 3. Then we deal with

V \ast (Dc + E )V =
\bigl( 
Id - iA +Op( - 6)

\bigr) 
(Dc + E )

\bigl( 
Id + iA +Op( - 6)

\bigr) 
=Dc + E + i [Dc,A ] + i [E ,A ] +A (Dc + E )A +Op( - 4)

=Dc + E + i [Dc,A ] +Op( - 4) .

Thus, to recover (3.11), we have to consider the homological equation

i [Dc,A ] =

\left(  0  - E12  - E13

 - E \ast 
12 0 0

 - E \ast 
13 0 0

\right)  +Op( - 4) ,

where the E1j with j \in \{ 2,3\} are given and A is the unknown. We impose Aij = 0
for (i, j) not equal to (1,2) or (1,3). Then we have to solve i

\bigl[ 
\rho (x),A1j

\bigr] 
+ i A1j \Delta =

 - E1j + Op( - 4), where \langle \xi \rangle := (1 + | \xi | 2)1/2. Assuming that A is in Op( - 3), the
commutator [\rho ,A1j ] is in Op( - 4), and this reduces to

A1j = i E1j \Delta  - 1 +Op( - 6) .

We just take A1j := i E1j \Delta  - 1. With this choice, as required initially, the operator
A is indeed in OP\scrH s - 1S - 3. Moreover, by construction, we have access to (3.11).

Retain that A is of small order for two reasons. First, E is obtained by commuting
O0 with the diagonal matrix \rho (x) Id with a corresponding gain of one derivative, so
that E \equiv E - 1. Second, the difference | \xi | 2 between the two eigenvalues \rho (x) and
\rho (x) + | \xi | 2 is of order two. After division, this yields a supplementary gain of two
derivatives. Note also that the above process does not allow one to go further in the
diagonalization process, in order to get rid of E23. Indeed, the eigenvalue \rho (x)+ | \xi | 2 is
of multiplicity 2. Thus, we cannot exploit any gap between the (same two) eigenvalues
related to the bottom 2\times 2 block.
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EXTENDED MAGNETOHYDRODYNAMICS 4537

3.1.3. The approximate parametrix. Look at Dc + Er where the orders are
clearly separated:

\bullet Top 1 \times 1 block. The scalar pseudo-differential operator \rho (x) + E11 is self-
adjoint. Moreover, it is elliptic of order 0 since its principal symbol is the
function \rho (x), which satisfies (3.6). Thus, it can be inverted, and its inverse
is a self-adjoint pseudo-differential operator of order 0.

\bullet Bottom 2\times 2 block. This is

(Dc + Er)
Bot
2\times 2 :=

\bigl( 
\rho (x) - \Delta 

\bigr) 
Id2\times 2 + E Bot

2\times 2 , E Bot
2\times 2 :=

\biggl( 
E22 E23

E \ast 
23 E33

\biggr) 
,

where by construction E Bot
2\times 2 \in OP\scrH s - 1S - 1 acts continuously on \scrH r. The

above operator is self-adjoint. Once \rho (x) satisfies (3.6), it is extracted from
an operator which is elliptic of order 0. As such, it is an elliptic operator of
order 0. For large frequencies, it is (in view of its principal symbol | \xi | 2) elliptic
of order 2. Consider (for s - 2\leq r\leq s) the elliptic equation (Dc +Er)

Bot
2\times 2 u=

f \in \scrH r, or alternatively\bigl( 
\rho (x) - \Delta 

\bigr) 
u= f  - E Bot

2\times 2 u\in \scrH r .

By applying Theorem 1.2.A in [42], we recover that u\in \scrH r+2 as required. In
conclusion, the operator (Dc+Er)

Bot
2\times 2 is elliptic of order 2 on the whole phase

space. It can therefore be inverted, and its inverse is a self-adjoint matrix
valued pseudo-differential operator of order  - 2.

By construction, we have

(L c
2 )

 - 1 =O0 V (Dc + Er  - R) - 1 V \ast O - 1
0 , R \in OP\scrH s - 1S - 4 .

On the other hand, for large frequencies, we can write

(Dc + Er  - R) - 1 = (Dc + Er)
 - 1 +

+\infty \sum 
k=1

\bigl( 
(Dc + Er)

 - 1 R
\bigr) k

(Dc + Er)
 - 1

= (Dc + Er)
 - 1 +Op( - 4) ,

and consequently

(L c
2 )

 - 1 =O0 V
\bigl( 
Dc + Er

\bigr)  - 1
V \ast O - 1

0 +Op( - 4) .

But, on the other hand, V = Id +Op( - 3). Thus, the nondiagonal terms induced by
the actions of V and V \ast can be incorporated in a remainder. More precisely,

(L c
2 )

 - 1 =O0

\biggl( \bigl( 
\rho (x) + E11

\bigr)  - 1
0

0 (Dc + Er)
 - 1
22

\biggr) 
O - 1

0 +Op( - 3) .

Now let v \in \scrD r. Thus, we have O - 1
0 v= t(0, v2, v3) with vj \in \scrH r, so that

(L c
2 )

 - 1 v=O0

\left(  0\bigl( 
(Dc + Er)

Bot
2\times 2

\bigr)  - 1
\biggl( 

v2
v3

\biggr) \right)  +Op( - 3)

\left(  0
v2
v3

\right)  =Op( - 2)

\left(  0
v2
v3

\right)  ,

which leads to the expected conclusion.

3.2. Transformation of the compressible equations. We start by recalling
what Lemma 3 becomes in the compressible case.
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4538 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

Lemma 15 (a decreasing enegy). Let U(\rho ) be the internal energy function of
the system. It must satisfy U \prime (\rho ) = \rho  - 2 p(\rho ) \geq 0, and it can be adjusted such that
U(0) = 0 so that U(\rho ) \geq 0. In particular, for a polytropic equation of state, we find
that U(\rho ) = c\rho \gamma  - 1/(\gamma  - 1), where c is a positive constant and \gamma > 1 is the heat capacity
ratio. Retain that

\scrE c(t) :=
1

2

\int 
\BbbR 3

\bigl( 
\rho | v| 2 + 2 \rho U(\rho ) +B \cdot B\ast \bigr) (t, \cdot ) dx\leq \scrE c(0) ,(3.12)

where \int 
\BbbR 3

B \cdot B\ast (t, \cdot )dx=

\int 
\BbbR 3

\biggl( 
| B| 2 + | \nabla \times B| 2

\rho 

\biggr) 
(t, \cdot ) dx .

Proof. It is well known (see especially [27] but also [4, 31]) that XMHD (with
\nu = 0) has a Hamiltonian structure conserving the energy \scrE c. The inequality inside
(3.12) comes from the dissipative effects which are induced by the (fluid) bulk viscosity.
Note that there are also (when \nu = 0) three independent Casimirs; see (52), (53), and
(54) in [1].

Since p\prime > 0, instead of working with \rho , we can alternatively deal with

q := g(\rho ) :=

\int \rho 

\=\rho 

\sqrt{} 
p\prime (s)

s
ds , g\prime (\rho ) =

\sqrt{} 
p\prime (\rho )

\rho 
> 0 , a(q) := g - 1(q) g\prime \circ g - 1(q) .

Expressed in terms of t(q, v,B\ast ), the system (1.8) becomes symmetric with respect to
the two first lines below, that is, especially with respect to (q, v). We consider\left\{     

\partial tq+ (v \cdot \nabla )q+ a(q) \nabla \cdot v= 0 ,

\partial tv+ (v \cdot \nabla )v+ a(q) \nabla q+B\ast \times K c
 - 1B

\ast +
1

2
\nabla | K c

 - 1B
\ast | 2 = \nu \nabla (\nabla \cdot v) ,

\partial tB
\ast +\nabla \times 

\bigl( 
B\ast \times (v - d K c

 - 1B
\ast )
\bigr) 
+\nabla \times 

\bigl( 
(\nabla \times v)\times K c

 - 1B
\ast \bigr) = 0 .

(3.13)

In (3.13), in comparison with (1.8), care has been taken to everywhere replace \nabla \times B
as prescribed by (3.9). In (3.13), the expression K c

 - 1B
\ast undergoes no more than one

derivative. In view of Proposition 14, this means that the corresponding contributions
can be seen as acting on B\ast like zero order operators (and even of order  - 1). The
equation on B\ast contains an inertial contribution at the end of the last line of (3.13),
which is of order 2 with respect to v. The idea of section 2 is to reduce this order to
1 by introducing certain derivatives of v, namely those contained in the vorticity w.
Remarkably, the extra derivatives of B\ast thus generated (when looking at the equation
on w) are exactly balanced inside symmetric structures. In the compressible case,
derivatives of q (or \rho ) appear during this procedure. Moreover, all derivatives of v
are required, including the divergence part \nabla \cdot v. Accordingly, we have to introduce
the new unknown U c

v := (q,\nabla q,\nabla \cdot v,w,B\ast ), where w :=\nabla \times v. From (3.13), we can
deduce that \left\{           

\partial tq+ v \cdot \nabla q+ a(q) \nabla \cdot v= 0 ,

\partial t(\nabla q) + (v \cdot \nabla )\nabla q+ a(q) \nabla (\nabla \cdot v) =S c \.q
v0 U

c
v ,

\partial t(\nabla \cdot v) + (v \cdot \nabla )(\nabla \cdot v) + a(q) \Delta q - \nu \Delta (\nabla \cdot v) =S c \.v
v1 U c

v ,
\partial tw+ v \cdot \nabla w+

\bigl( 
K c

 - 1B
\ast \cdot \nabla 

\bigr) 
B\ast =S cw

v0 U c
v ,

\partial tB
\ast +

\bigl( \bigl( 
v - dK c

 - 1B
\ast \bigr) \cdot \nabla \bigr) 

B\ast + (K c
 - 1B

\ast \cdot \nabla )w=S cB\ast 

v0 U c
v .

(3.14)
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EXTENDED MAGNETOHYDRODYNAMICS 4539

In (3.14), the velocity v must be deduced from (w,\nabla \cdot v) through the div-curl system
(A.4); see Appendix A.2. On the other hand, the operator S c

v = t(0,S c \.q
v0 ,S

c \.v
v0 ,S

cw
v0 ,

S cB\ast 

v0 ) put in a source term is outlined below:

S c \.q
v0 U

c
v :=  - \nabla q Dv - a\prime (q) (\nabla \cdot v) \nabla q ,

S c \.v
v1 U c

v := - 
3\sum 

i=1

(\partial iv \cdot \nabla )vi  - a\prime (q) | \nabla q| 2  - \nabla \cdot (S cv
v0 U c

v) ,

S cw
v0 U c

v := (B\ast \cdot \nabla )(K c
 - 1B

\ast ) + (\nabla \cdot B\ast 
0) K c

 - 1B
\ast 

 - \nabla \cdot (K c
 - 1B

\ast ) B\ast + (w \cdot \nabla )v - w (\nabla \cdot v) ,
S cB\ast 

v0 U c
v := - 

\bigl( 
\nabla \cdot v - d (\nabla \cdot K c

 - 1B
\ast )
\bigr) 
B\ast + (\nabla \cdot B\ast 

0)
\bigl( 
v - d K c

 - 1B
\ast \bigr) 

+ (B\ast \cdot \nabla )
\bigl( 
v - d K c

 - 1B
\ast \bigr)  - \nabla \cdot (K c

 - 1B
\ast ) w+ (w \cdot \nabla )(K c

 - 1B
\ast ) ,

(3.15)

where S c \.v
v1 is indeed of order 1 since S cv

v0 U c
v := B\ast \times K c

 - 1B
\ast + 1

2 \nabla | K c
 - 1B

\ast | 2. In
comparison with S i

v0U
i
v, we have many new contributions. Some of them come from

the fact that K c
 - 1B

\ast and B\ast are no longer solenoidal vector fields. Observe that we
have exploited Lemma 11 to replace \nabla \cdot B\ast everywhere by \nabla \cdot B\ast 

0 (this is essential to
avoid artificial losses of derivatives coming from \nabla \cdot B\ast ). We have also incorporated
the vortex stretching induced by \nabla \cdot v (which is no longer zero) as well as other
contributions related to \nabla \cdot v.

3.3. Proof of Theorem 2. We start by showing Theorem 2 under the more
restrictive regularity assumption s > 7/2. We refer the reader to section 4 for the
optimal result. From (1.20), we know that \rho 0 \in \scrH s, and by construction we have
q0 = g(\=\rho + \rho 0) with g(\=\rho ) = 0. Then, by the rule of composition in \scrH s, we recover that
q0 \in \scrH s. In particular, at time t= 0, with \~s := s - 1> 5/2, we can assert that

U c
v(0, \cdot ) =U c

v0 = (q0,\nabla q0,\nabla \cdot v0,w0,B
\ast 
0)\in \scrH \~s , w0 :=\nabla \times v0 .(3.16)

Any smooth solution to (1.8)--(1.9)--(1.10) leads to a solution to (3.14)--(3.16), and
conversely. We study below the time evolution of the L2-norm of U c

v (assuming for
the moment that U c

v is bounded in the large \scrH \~s-norm).

Lemma 16 (L2-energy estimate for the vorticity formulation in the compressible
case). Let T > 0. Assume that U c

v \in C([0, T ];\scrH \~s) is a solution to (3.14) with initial
data (3.16). Then we can find a constant C depending only on the C([0, T ];\scrH \~s)-norm
of U c

v such that

\| U c
v(t, \cdot ) \| L2\leq \| U c

v0 \| L2 eC t+C t/\nu \forall t\in [0, T ] .(3.17)

Proof. Multiply (3.14) by tU c
v, and integrate with respect to x. After integration

by parts,

1

2

d

dt

\biggl( \int 
\BbbR 3

| U c
v(t, \cdot )| 2 dx

\biggr) 
+ \nu 

\int 
\BbbR 3

| \nabla (\nabla \cdot v)| 2 dx

=

\int 
\BbbR 3

\bigl( 
\nabla q \cdot S c \.q

v0 U
c
v + (\nabla \cdot v) S c \.v

v1 U c
v +w \cdot S cw

v0 U c
v +B\ast \cdot S cB\ast 

v0 U c
v

\bigr) 
dx

+

\int 
\BbbR 3

(h0 + h1 + h2 + h3 + h4) dx ,

(3.18)
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4540 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

where the S c \star 
v\diamond are the source terms of (3.15), whereas the h \star come from the quasi-

linear parts. We find that\int 
\BbbR 3

h0 dx := - 
\int 

q a(q) (\nabla \cdot v) dx ,\int 
\BbbR 3

h1 dx := - 
\int 

U c
v \cdot 

\bigl( 
(v \cdot \nabla )U c

v

\bigr) 
dx=

1

2

\int 
(\nabla \cdot v) | U c

v| 2 dx ,\int 
\BbbR 3

h2 dx := - 
\int 
\BbbR 3

a(q)
\bigl( 
\nabla q \cdot \nabla (\nabla \cdot v) + (\nabla \cdot v) \Delta q

\bigr) 
dx=

\int 
\BbbR 3

a\prime (q) (\nabla \cdot v) | \nabla q| 2 dx ,\int 
\BbbR 3

h3 dx :=

\int 
\BbbR 3

\bigl( 
\nabla \cdot (K c

 - 1B
\ast )
\bigr) 
(w \cdot B\ast ) dx ,\int 

\BbbR 3

h4 dx := - d

2

\int 
\BbbR 3

\bigl( 
\nabla \cdot (K c

 - 1B
\ast )
\bigr) 
| B\ast | 2 dx .

We consider each term separately. Knowing that \~s > 5/2, we use repeatedly the
Sobolev embedding theorem \scrH \~s \lhook \rightarrow L\infty . We also exploit Proposition 14 with r= s - 2
to deduce from \nabla \times B\ast \in \scrH \~s - 1 \equiv \scrH s - 2 that K c

 - 1B
\ast = (L c

2 )
 - 1\nabla \times B\ast \in \scrH s. In other

words

\| K c
 - 1B

\ast \| \scrH \~s\lesssim \| B\ast \| \scrH \~s - 1 , \| \nabla K c
 - 1B

\ast \| \scrH \~s\lesssim \| B\ast \| \scrH \~s .(3.19)

On the other hand, by assumption, we know that

\| U c
v \| L\infty ([0,T ]\times \BbbR 3) + \| \nabla U c

v \| L\infty ([0,T ]\times \BbbR 3)\lesssim M :=\| U c
v \| C([0,T ];\scrH \~s)<+\infty .

First, from Lemma 24, we have\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

\nabla q \cdot S c \.q
v0 U

c
v dx

\bigm| \bigm| \bigm| \bigm| \leq \bigl( 
\| \nabla q \| L\infty + \| \nabla a(q) \| L\infty 

\bigr) 
\| U c

v \| 2L2 \lesssim M \| U c
v \| 2L2 .

We now turn to the equation on \nabla \cdot v, where the source term S c \.v
v1U

c
v does include a

loss of one derivative. The idea is to compensate this after integration by parts by
the bulk (fluid) viscosity. With the help of Lemma 24, this gives rise to\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 3

(\nabla \cdot v) S c \.v
v1U

c
v dx

\bigm| \bigm| \bigm| \bigm| \leq 3\sum 
i=1

\int 
\BbbR 3

| \nabla \cdot v| | \partial iv| | \nabla vi| dx+

\int 
\BbbR 3

| \nabla \cdot v| | a\prime (q)| | \nabla q| 2 dx

+

\int 
\BbbR 3

| \nabla (\nabla \cdot v)| | S cv
v0U

c
v| dx

\leq C
\bigl( 
\| U c

v \| L\infty 
\bigr) 
\| U c

v \| 2L2

+ c \nu 

\int 
\BbbR 3

| \nabla (\nabla \cdot v)| 2 dx+
C

\nu 

\int 
\BbbR 3

| S cv
v0U

c
v| 2 dx ,

where the constant c\in \BbbR \ast 
+ can be chosen as small as desired. Observe that\int 

\BbbR 3

| S cv
v0U

c
v| 2 dx\leq \| S cv

v0U
c
v \| L\infty 

\int 
\BbbR 3

| S cv
v0U

c
v| dx .

From (3.19), we have

\| S cv
v0U

c
v \| L\infty \lesssim \| K c

 - 1B
\ast \| L\infty 

\bigl( 
\| B\ast \| L\infty + \| \nabla K c

 - 1B
\ast \| L\infty 

\bigr) 
\lesssim \| K c

 - 1B
\ast \| \scrH \~s

\bigl( 
\| B\ast \| \scrH \~s + \| \nabla K c

 - 1B
\ast \| \scrH \~s

\bigr) 
\lesssim \| B\ast \| 2\scrH \~s\lesssim M2 .
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EXTENDED MAGNETOHYDRODYNAMICS 4541

On the other hand,\int 
\BbbR 3

| S cv
v0U

c
v| dx\leq \| K c

 - 1B
\ast \| L2

\bigl( 
\| B\ast \| L2 + \| \nabla K c

 - 1B
\ast \| L2

\bigr) 
\lesssim \| U c

v \| 2L2 .

Thus, we can retain that\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

(\nabla \cdot v) S c \.v
v1 U c

v dx

\bigm| \bigm| \bigm| \bigm| \leq C M

\biggl( 
1 +

M

\nu 

\biggr) 
\| U c

v \| 2L2 + c \nu 

\int 
\BbbR 3

| \nabla (\nabla \cdot v)| 2 dx .

Thanks to Lemma 11 and (3.19), the two contributions S cw
v0 U c

v and S cB\ast 

v0 U c
v are both

of order 0 in terms of U c
v. Be careful: in the two definitions of S cw

v0 U c
v and S cB\ast 

v0 U c
v,

some derivatives act on K c
 - 1 and therefore on \rho (since the operator K c

 - 1 involves
coefficients depending on \rho ). But these one order derivatives of \rho are included in U c

v

(through the derivatives of q), and therefore this corresponds indeed to zero order
contributions.

As described above, we can obtain\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

w \cdot S cw
v0 U c

v dx

\bigm| \bigm| \bigm| \bigm| \lesssim M \| U c
v \| 2L2 ,

\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

B\ast \cdot S cB\ast 

v0 U c
v dx

\bigm| \bigm| \bigm| \bigm| \lesssim M \| U c
v \| 2L2 .

The same sort of arguments applies to handle the h \star . We find that\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

hj dx

\bigm| \bigm| \bigm| \bigm| \lesssim M \| U c
v \| 2L2 \forall j \in \{ 0, . . . ,4\} .

By selecting c small enough, we can absorb the term implying the L2-norm of \nabla (\nabla \cdot v).
Note that the presence of a bulk (fluid) viscosity is crucial here to compensate for
losses related to \nabla (\nabla \cdot v). At the end, there remains

d

dt

\biggl( \int 
\BbbR 3

| U c
v(t, \cdot )| 2 dx

\biggr) 
\leq C M

\biggl( 
1 +

M

\nu 

\biggr) \int 
\BbbR 3

| U c
v(t, \cdot )| 2 dx .

It suffices to implement Gr\"onwall's inequality to recover the inequality (3.17) for some
convenient constant C.

Starting from there, the construction of \scrH \~s-solutions to (3.14) can be achieved
through the general strategy [6, 33] already explained at the end of section 2. Note
that the lifespan T does depend on the bulk viscosity \nu . It shrinks to 0 when \nu goes
to 0+. Then, from the \scrH \~s-solution to (3.14), we can recover solutions to (1.8) which
are such that (q, v,B\ast )\in \scrH s\times \scrH s\times \scrH s - 1 with s > 7/2. Starting from there and from
(3.9), we get that \nabla \times B \in \scrH s, while \nabla \cdot B =\nabla \cdot B\ast 

0 \in \scrH s. It follows that B \in \scrH s+1 as
indicated. This concludes the proof of Theorem 2, at least when s > 7/2. The case
s > 5/2 is investigated in the next section.

4. The potential formulations. The aim of this section is to develop an al-
ternative to the vorticity formulations. The basic idea is to integrate B\ast instead of
looking at derivatives of (q, v). From PB\ast , or just from B\ast when \nabla \cdot B\ast = 0, we can
extract a magnetic potential A\ast which is defined by

\nabla \times A\ast =PB\ast , \nabla \cdot A\ast = 0 .(4.1)
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4542 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

From now on, we imply \rho , v and A\ast as new unknowns, with the following motivations:
-- A simplified presentation. Like in (1.8), the (compressible) potential formu-
lation involves seven unknowns, namely the components of \rho , v, and A\ast .
Contrary to (3.14), there is no need to introduce four supplementary un-
knowns.

-- A better regularity result. Up to now, we have worked with s > 7/2. As stated
in Theorems 1 and 2, we would like to improve the threshold up to s > 5/2.
To this end, we will avoid the use of Proposition 14, which is costly in terms
of the regularity of \rho .

-- Additional insights. This change of point of view offers complementary per-
spectives. For instance, in the compressible case, it allows us to better un-
derstand why a bulk (fluid) viscosity is required for stability.

The potential formulations are therefore more simple in appearance and more
efficient in some respects. However, there are important subtleties when performing
L2-energy estimates, explaining why this approach has been postponed until now. On
the other hand, the vorticity formulations are necessary and instructive to understand
how higher order energy estimates can be performed at the level of the potential
formulations.

From (3.2) and (4.1), we deduce that \partial tB
\ast =\nabla \times \partial tA

\ast . It follows that the curl
operator can be put in factor of the last equation of (1.8), where it can be canceled
(modulo a gradient). This idea applies quite directly in the incompressible context of
subsection 4.1. It must be carefully implemented in the compressible framework of
subsection 4.2.

4.1. The incompressible situation. The condition\nabla \cdot B\ast = 0 and the constant
density make things easier. In section 4.1.1, we derive the incompressible potential
equations. In section 4.1.2, we perform L2-energy estimates on linearized equations.
In section 4.1.3, we conclude the proof of Theorem 1.

4.1.1. The incompressible potential equations. The unknown is U i
p :=

(v,A\ast ). We consider the system\biggl\{ 
\partial tv+ (v \cdot \nabla )v - (A\ast  - A)\times (\nabla \times A\ast ) +\nabla p= 0 ,
\partial tA

\ast  - 
\bigl( 
v - d (A\ast  - A)

\bigr) 
\times (\nabla \times A\ast ) - (A\ast  - A)\times (\nabla \times v) +\nabla e= 0 ,

(4.2)

where both v and A\ast are solenoidal vector fields:

\nabla \cdot v= 0 , \nabla \cdot A\ast = 0 ,(4.3)

while A can be obtained from A\ast through

A= (Id - \Delta ) - 1A\ast , \nabla \cdot A= 0 .(4.4)

The introduction of the Lagrange multipliers (scalar functions) p and e is needed
above to ensure the propagation of the constraints \nabla \cdot v= 0 and \nabla \cdot A\ast = 0.

Lemma 17 (link between the incompressible potential and vorticity formula-
tions). Let U i

p = (v,A\ast ) be some \scrH s-solution on [0, T ] to (4.2)--(4.4)--(4.3) with
s > 5/2. Define

B\ast :=\nabla \times A\ast , B :=\nabla \times A.(4.5)

Then (v,B\ast ,B) is a solution on [0, T ] to (1.15)--(1.16)--(1.17), which is as in (1.19).
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EXTENDED MAGNETOHYDRODYNAMICS 4543

Proof. By construction, we have (1.15). On the other hand, by applying the curl
operator to (4.4), we get (1.17). Since \nabla \cdot A= 0, the relation (4.4) is the same as

A\ast  - A= - \Delta A=\nabla \times (\nabla \times A) =\nabla \times B .

It follows that

 - (A\ast  - A)\times (\nabla \times A\ast ) =B\ast \times (\nabla \times B) .

Exploiting the two above relations and applying the curl operator \nabla \times to the second
line of (4.2), the term \nabla e disappears and we have direct access to (1.16).

At the initial time t= 0, we impose

U i
p(0, \cdot ) =U i

p0 = (v0,A
\ast 
0)\in \scrD s(\BbbR 3;\BbbR 3)2 , s > 5/2 .(4.6)

4.1.2. \bfitL 2-energy estimates. The conserved quantity \scrE i of Lemma 3 (see the
definition (2.1)) can be reformulated according to

\scrE i :=
1

2

\int 
\BbbR 3

\bigl( 
| v| 2 + | \nabla \times (Id - \Delta ) - 1A\ast | 2 + | \Delta (Id - \Delta ) - 1A\ast | 2

\bigr) 
dx<+\infty .(4.7)

This already furnishes some (high frequency) L2-bound concerning U i
p. But this is not

enough. To construct solutions by a fixed-point argument, we also need to consider the
stability issue. To this end, we have to look at the linearized equations coming from
(4.2), dealing with \.U i

p = ( \.v, \.A\ast ). When doing this, the term which, for instance, is at

the top right of (4.2) leads to  - (A\ast  - A)\times (\nabla \times \.A\ast )+(\nabla \times A\ast )\times 
\bigl( 
\.A\ast  - (Id - \Delta ) - 1 \.A\ast \bigr) .

Given a Lipschitz field A\ast , the right-hand side is such that

\| (\nabla \times A\ast )\times 
\bigl( 
\.A\ast  - (Id - \Delta ) - 1 \.A\ast \bigr) \| L2\lesssim \| \.U i

p \| L2 .

Such contributions clearly cannot undermine the local L2-stability. Thus, to simplify
the presentation, they can be ignored. We can focus on\biggl\{ 

\partial t \.v+ (v \cdot \nabla ) \.v+\nabla \.p - (A\ast  - A)\times (\nabla \times \.A\ast ) = 0 ,

\partial t \.A\ast  - 
\bigl( 
v - d (A\ast  - A)

\bigr) 
\times (\nabla \times \.A\ast ) - (A\ast  - A)\times (\nabla \times \.v) +\nabla \.e= 0 ,

(4.8)

together with

\nabla \cdot \.v= 0 , \nabla \cdot \.A\ast = 0 .(4.9)

At the initial time t= 0, we impose

\.U i
p(0, \cdot ) = \.U i

p0 = ( \.v0, \.A\ast 
0)\in \scrD 0(\BbbR 3;\BbbR 3)2 .(4.10)

Lemma 18 (L2-energy estimates for the linearized incompressible potential equa-
tions). Let T > 0. Assume that U i

p = (v,A\ast ) is such that U i
p \in C([0, T ];\scrD s) for some

s > 5/2. Then the Cauchy problem (4.8)--(4.9) with initial data (4.10) has a solution
on [0, T ]. Moreover, we can find a constant C depending only on the C([0, T ];\scrH s)-
norm of U i

p such that

\| \.U i
p(t, \cdot ) \| L2\leq \| \.U i

p0 \| L2 eC t \forall t\in [0, T ] .(4.11)

Any \scrH s-solution to the initial value problem (4.2)--(4.4)--(4.3)--(4.6) leads to a
solution to (4.8)--(4.9) with initial data \.U i

p0 = U i
p0. As a consequence, the proof of

Lemma 18 gives another access to some L2-bound, namely

\| U i
p(t, \cdot ) \| L2\leq \| U i

p0 \| L2 eC t \forall t\in [0, T ] .
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4544 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

Proof. To gain a better grasp of the arguments, we have made a clear distinction
between two kinds of quantities:

-- On the one hand, there are those which play the role of coefficients and which
are managed through the assumption

\| U i
p \| L\infty ([0,T ]\times \BbbR 3) + \| \nabla U i

p \| L\infty ([0,T ]\times \BbbR 3)\lesssim M :=\| U i
p \| C([0,T ];\scrH s)<+\infty .

(4.12)

-- On the other hand, there are those which are handled as unknowns and which
are marked by a dot, like \.U i

p = ( \.v, \.A\ast ).
We now exploit the formalism of Remark 12. We denote by TC with C =A\ast  - A or

C = v the operator defined at the level of (3.3). We find that T \ast 
C

\.A\ast = - C\times (\nabla \times \.A\ast ).
Thus, the system (4.8) can be rewritten according to\biggl\{ 

\partial t \.v+ (v \cdot \nabla ) \.v+\nabla \.p+T \ast 
A\ast  - A

\.A\ast = 0 ,

\partial t \.A\ast +T \ast 
v

\.A\ast  - d T \ast 
A\ast  - A

\.A\ast +T \ast 
A\ast  - A \.v+\nabla \.e= 0 .

(4.13)

As already noted, the operator TC is not skew-adjoint and, of course, neither is T \ast 
C .

But (Remark 12), knowing that the contribution \nabla \cdot B\ast is given (or can be forgotten),
the action of TC (viewed as \~TC) on B\ast becomes skew-adjoint. This argument was
crucial in sections 2 and 3. None of that applies to the action of T \ast 

C on \.A\ast (because the
analogue of \nabla \cdot B\ast = 0 in the context of T \ast 

C
\.A\ast is not \nabla \cdot \.A\ast = 0). In other words, (4.13)

is not well-posed, while its dual version is, in the sense that it becomes symmetric
under the condition (4.9). To put this principle into practice, we multiply the first
and second equations of (4.13), respectively, by \.v and \.A\ast ; we integrate with respect to
the variable x; and then we force the emergence of the operator TC (instead of T \ast 

C )
by passing to the adjoint. Since v \in \scrD s, the contribution related to v \cdot \nabla disappears.
Since \nabla \cdot \.A\ast = 0, the term involving \nabla \.e is eliminated. Denoting by \langle \cdot , \cdot \rangle the scalar
product in L2, this furnishes

1

2

d

dt

\biggl( \int 
\BbbR 3

| \.U i
p(t, \cdot )| 2 dx

\biggr) 
= - \langle TA\ast  - A \.v, \.A\ast \rangle  - \langle Tv

\.A\ast , \.A\ast \rangle + \langle TA\ast  - A
\.A\ast , d \.A\ast  - \.v\rangle .

Observe the changeover from T \ast 
C to TC . From there, the decomposition (3.5) becomes

pertinent. In the actual incompressible situation, using (A.2), this yields

1

2

d

dt

\biggl( \int 
\BbbR 3

| \.U i
p(t, \cdot )| 2 dx

\biggr) 
=

1

2

\int 
\BbbR 3

\Bigl( \bigl( 
(A\ast  - A) \cdot \nabla 

\bigr) \bigl( 
\.A\ast \cdot (2 \.v - d \.A\ast )

\bigr) 
+ (v \cdot \nabla )| \.A\ast | 2

\Bigr) 
dx

 - \langle ( \.v \cdot \nabla )(A\ast  - A), \.A\ast \rangle  - \langle ( \.A\ast \cdot \nabla )v, \.A\ast \rangle 
+ \langle ( \.A\ast \cdot \nabla )(A\ast  - A), d \.A\ast  - \.v\rangle .

In the right-hand side, since A\ast  - A and v are solenoidal vector fields, after integration
by parts, the first line disappears. Exploiting (4.12) to control the two last lines, we
find that

d

dt

\biggl( \int 
\BbbR 3

| \.U i
p(t, \cdot )| 2 dx

\biggr) 
\lesssim 
\int 
\BbbR 3

| \.U i
p(t, \cdot )| 2 dx .

By Gr\"onwall's inequality, we recover (4.11).

4.1.3. End of the proof of Theorem 1. The construction of \scrH s-solutions to
(4.2) follows the lines mentioned before (it is not detailed). But, we add a few words
about how higher order estimates can be obtained. In the context of (4.2), there are
two ways to proceed:
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EXTENDED MAGNETOHYDRODYNAMICS 4545

-- The incompressible vorticity formulation is in fact similar to a derived version
of the incompressible potential formulation. It follows that the preceding L2-
estimates for (2.11)--(2.12) correspond to one order estimates for (4.2)--(4.4).
In other words, the work of subsection 2.4 can be seen as the first stage to
check that higher order estimates (namely \scrH 1-estimates) are available for the
incompressible potential formulation.

-- Looking at the linearized equations (4.13) with adequate source terms amounts
to the same thing as studying the equations satisfied by the derivatives of U i

p.
Thus, the proof of Lemma 9 already provides with convincing points of ref-
erence towards \scrH s-estimates.

4.2. The compressible framework. The general lines are as in subsection 4.1,
but the variations of \rho oblige to adapt a number of aspects. The first step (in sec-
tion 4.2.1) is to correctly interpret (1.9) in terms of the potentials A\ast and A. The
second stage (in section 4.2.2) is to propose potential equations that are compatible
with (1.8). Then (in section 4.2.3), we explain how to obtain L2-energy estimates on
linearized equations.

4.2.1. The potential constitutive relation. Keeping (4.1) and assuming that
PB =\nabla \times A, the constitutive relation (1.9) is the same as

PB\ast  - PB  - \nabla \times 
\biggl( 
\nabla \times B

\rho (x)

\biggr) 
=\nabla \times 

\biggl( 
A\ast  - A - \nabla \times B

\rho (x)

\biggr) 
= 0 .

This suggests to impose

A\ast  - A - \nabla \times B

\rho (x)
= 0 .(4.14)

Exploiting (3.7) again with (4.5), this is equivalent to

A=A\ast  - (L c
2 )

 - 1\nabla \times (\nabla \times A\ast ) = (L c
2 )

 - 1(\rho A\ast ) .(4.15)

In this way, A is deduced from A\ast through a pseudo-differential operator which is of
order zero (or less). In what follows, we do not need Proposition 14. Instead, we are
satisfied with Lemma 13 leading to

\| A \| L2\lesssim \| A\ast \| L2 .(4.16)

One of the difficulties is to show that the choice (4.15) is appropriate.

4.2.2. The compressible potential equations. Let p :\BbbR \rightarrow \BbbR be any smooth
function (of \rho ). Fix some initial data (\rho 0, v0,B

\ast 
0) as in (1.20). From B\ast 

0 , extract the
vector field A\ast 

0 which is such that

\nabla \times A\ast 
0 =P B\ast 

0 , \nabla \cdot A\ast 
0 = 0 , A\ast 

0 \in \scrH s .

The unknown is U c
p := (\rho , v,A\ast ). Consider the system\left\{             

\partial t\rho + (v \cdot \nabla )\rho + \rho \nabla \cdot v= 0 ,

\partial tv+ (v \cdot \nabla )v+
\nabla p

\rho 
 - (A\ast  - A)\times (\nabla \times A\ast )

+\nabla 
\bigl( 
| A\ast  - A| 2/2

\bigr) 
= \nu \nabla (\nabla \cdot v) + (A\ast  - A)\times QB\ast 

0 ,
\partial tA

\ast  - 
\bigl( 
v - d (A\ast  - A)

\bigr) 
\times (\nabla \times A\ast ) - (A\ast  - A)\times (\nabla \times v) +\nabla e

=
\bigl( 
v - d (A\ast  - A)

\bigr) 
\times QB\ast 

0 ,

(4.17)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

5/
25

 to
 1

92
.5

4.
17

6.
19

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



4546 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

together with

\nabla \cdot A\ast = 0 ,(4.18)

where A is deduced from A\ast through (4.15). At the initial time t= 0, we impose

U c
p(0, \cdot ) =U c

p0 = (\rho 0, v0,A
\ast 
0)\in \scrH s(\BbbR 3;\BbbR )\times \scrH s(\BbbR 3;\BbbR 3)2 , s > 5/2 .(4.19)

Lemma 19 (link between the compressible potential and vorticity formulations).
Let U c

p be some \scrH s-solution on [0, T ] to (4.15)--(4.17) with initial data as in (4.19).
Define

B\ast :=QB\ast 
0 +\nabla \times A\ast , B :=QB\ast 

0 +\nabla \times A.(4.20)

Then (\rho , v,B\ast ,B) is a solution on [0, T ] to (1.8)--(1.9), which is associated with the
initial data (\rho 0, v0,B

\ast 
0) and which is as in (1.21).

Note that the solution to (4.17) is no longer subjected to \nabla \cdot v = 0, but we still
have \nabla \cdot A\ast = 0. The part QA is not involved at the level of (4.20), though it is
specified when solving (4.15). In view of (4.14), in general, we do not have \nabla \cdot A= 0.

Proof. By construction, we have B\ast (0, \cdot ) = B\ast 
0 , and therefore (\rho , v,B\ast )(0, \cdot ) =

(\rho 0, v0,B
\ast 
0) as required. On the other hand, it is clear that (\rho , v,B\ast ) is as indicated in

(1.21). Let us consider B. Since \rho A\ast \in \scrH s, from (4.15), we get that A\in \scrH s+2. Then,
from (4.20), we can deduce that \nabla \times B \in \scrH s, while by assumption \nabla \cdot B =\nabla \cdot B\ast 

0 \in \scrH s.
Thus, we find that B \in \scrH s+1 as claimed at the level of (1.21). From (4.20), we find
that B\ast  - B = \nabla \times A\ast  - \nabla \times A. Then, by applying the curl operator to (4.14),
we obtain (1.9). The equation on \rho is unchanged. In view of (4.14) and (4.20), the
equation on v inside (4.17) is just a rephrasing of the equation on v inherited from
(1.8). This also applies to the last equation of (4.17) after applying the curl operator
to it.

The equations inside (4.17) bear some similarity to symmetric hyperbolic-parabolic
systems which can be put in a normal form in the sense of Kawashima and Shizuta
[25]. To see why, we have to check that the conditions enumerated in section 3
of [25] do apply (at least formally). To match with the notations of [25], define
vI :=

t(\rho ,Pv,PA\ast ) and vII :=Qv. This repartition gives rise to\biggl\{ 
\partial tvI +AI(vI , vII ,Dx)vI = \=gI(vI , vII ,DxvII) ,
\partial tvII = \nu \nabla (\nabla \cdot vII) + \=gII(vI , vII ,DxvI ,DxvII) ,

(4.21)

where \=gI = \=g1I (vI , vII ,DxvII) + \=g2I (vI , vII) and

AI :=

\left(  v \cdot \nabla 0 0
0 P (v \cdot \nabla )P P T \ast 

A\ast  - A P
0 P T \ast 

A\ast  - A P P T \ast 
v - d (A\ast  - A) P

\right)  , \=g1I :=

\left(   - \rho \nabla \cdot vII
 - (v \cdot \nabla ) \cdot vII

0

\right)  .

Recall that, given a smooth vector field C, the operator TC is defined as in (3.3) with
adjoint T \ast 

C =  - C \times (\nabla \times ). Consider the action of P T \ast 
C P where the presence of

P eliminates the nonsymmetric one order terms (Remark 12). As a consequence,
P T \ast 

C P is (modulo zero order terms) a skew-adjoint operator with principal symbol
i (C \cdot \xi ) P (\xi ). As required, AI is skew-adjoint and the parabolic part on vII is non-
negative definite, while \=gI depends only on DxvII . This is where the role of the bulk
fluid viscosity can be understood. It is to compensate the losses of derivatives in the
first equation. This idea can serve as a guide for obtaining the well-posedness.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

5/
25

 to
 1

92
.5

4.
17

6.
19

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



EXTENDED MAGNETOHYDRODYNAMICS 4547

There are, however, some specific issues, among which are the presence of the
pseudo-differential action (4.15) to recover the coefficient A from A\ast . For the sake of
completeness, we give a direct proof in the next section.

4.2.3. \bfitL 2-energy estimates. The energy \scrE c of (3.12) is a decreasing quantity.
Assuming that \rho remains positive (recall that the internal energy U is positive as soon
as \rho > 0), this provides us with a priori estimates on v, \rho , and \nabla \times B. Now, from
(4.14) and (4.15), we can deduce that

\rho  - 1 \nabla \times B = (L c
2 )

 - 1\nabla \times (\nabla \times A\ast ) .(4.22)

Then, by combining Proposition 14 and Lemma 15, we obtain as in the incompressible
case some (high-frequency) L2-bounds on v and A\ast . But again, this is not sufficient.
We would like to have extra controls on \rho (other than those furnished by the integral
of \rho U) and especially stability estimates. For these reasons, we look at the linearized
equations which are associated with (4.17). We think in terms of the unknowns
(q, v,A\ast ) and therefore in terms of \.U c

p := ( \.q, \.v, \.A\ast ). When doing this, this time, the
term which is at the top right of the second line of (4.17) leads to

 - (A\ast  - A)\times (\nabla \times \.A\ast ) + (\nabla \times A\ast )\times \.A\ast  - (\nabla \times A\ast )\times ( \.L c
2 )

 - 1 (\rho A\ast )

 - (\nabla \times A\ast )\times (L c
2 )

 - 1 ( \.\rho A\ast + \rho \.A\ast ) ,

where the dot on L is needed to keep track of the dependence of (L c
2 )

 - 1 on \rho . Given
a Lipschitz field U c

p, the three terms appearing in the right-hand side are clearly

bounded by the L2-norm of \.U c
p, and they are therefore compatible with the local L2-

stability. To simplify the presentation, they are not mentioned. Modulo source terms
(which are ignored), we can focus on\left\{       

\partial t \.q+ v \cdot \nabla \.q+ a(q) \nabla \cdot \.v= 0 ,

\partial t \.v+ (v \cdot \nabla ) \.v+ a(q) \nabla \.q - (A\ast  - A)\times (\nabla \times \.A\ast )

+\nabla 
\bigl( 
(A\ast  - A) \cdot ( \.A\ast  - \.A)

\bigr) 
= \nu \nabla (\nabla \cdot \.v) ,

\partial t \.A\ast  - 
\bigl( 
v - d (A\ast  - A)

\bigr) 
\times (\nabla \times \.A\ast ) - (A\ast  - A)\times (\nabla \times \.v) +\nabla \.e= 0 .

(4.23)

At the initial time t= 0, we impose

\.U c
p(0, \cdot ) = \.U c

p0 = ( \.q0, \.v0, \.A\ast 
0)\in L2(\BbbR 3;\BbbR )\times L2(\BbbR 3;\BbbR 3)2 .(4.24)

Lemma 20 (L2-energy estimates for the linearized incompressible potential equa-
tions). Let T > 0. Assume that U c

p = (\rho , v,A\ast ) is such that U c
p \in C([0, T ];Hs) for

some s > 5/2. Then the Cauchy problem built with (4.15)--(4.23) and with initial data
(4.24) has a solution on [0, T ]. Moreover, we can find a constant C depending only
on the C([0, T ];\scrH s)-norm of U c

p such that

\| \.U c
p(t, \cdot ) \| L2\leq \| \.U c

p0 \| L2 eC t \forall t\in [0, T ] .(4.25)

Any \scrH s-solution to the initial value problem (4.15)--(4.17)--(4.19) leads to a so-
lution to (4.23)--(4.24) with initial data \.U c

p0 = U c
p0. As a consequence, the proof of

Lemma 20 gives another access to some L2-bound, namely

\| U c
p(t, \cdot ) \| L2\leq \| U c

p0 \| L2 eC t \forall t\in [0, T ] .
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4548 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

Proof. We multiply the first, second, and third equations of (4.23), respectively,
by \.q, \.v, and \.A\ast ; we integrate with respect to the variable x; and then we force
everywhere the emergence of TC by passing to the adjoint. This furnishes

1

2

d

dt

\biggl( \int 
\BbbR 3

| \.U c
p(t, \cdot )| 2 dx

\biggr) 
+ \nu 

\int 
\BbbR 3

| (\nabla \cdot \.v)(t, \cdot )| 2 dx\leq C

\int 
\BbbR 3

| \.U c
p(t, \cdot )| 2 dx

 - \langle TA\ast  - A \.v, \.A\ast \rangle  - \langle Tv
\.A\ast , \.A\ast \rangle + \langle TA\ast  - A

\.A\ast , d \.A\ast  - \.v\rangle .

Knowing (4.18), the situation is exactly as in the incompressible case, except that the
divergence of \.v is no longer zero. The only new term which could be problematic is
issued from the first contribution in the second line. It is unavoidable in our procedure.
However,

| \langle (\nabla \cdot \.v) (A\ast  - A), \.A\ast \rangle | \leq \nu 

2
\| \nabla \cdot \.v \| 2L2 +

C

\nu 
\| \.U c

p \| 2L2 .

This is where the bulk (fluid) viscosity is indispensable. It serves to absorb the above
loss of derivatives related to \nabla \cdot \.v. By Gr\"onwall's inequality, we recover (4.25).

The comments in section 4.1.3 are still appropriate. Indeed, the compressible
vorticity formulation is a derived version of the compressible potential formulation.
As such, the work of subsection 2.4 can serve to confirm that \scrH 1-estimates for the
compressible potential formulation are available. This remark concludes the proof of
Theorem 2.

5. Inertial wave phenomena. To better grasp the role of both di and de,
in this section, we work with the spacetime variables of origin, those of (1.6). For
0\leq de \lesssim di \ll 1 and frequencies | \xi | \ll d - 1

i , XMHD like MHD involves principally Alv\'en
and magnetosonic waves. The focus here is on what happens at higher frequencies,
when | \xi | \sim d - 1

i or | \xi | \sim d - 1
e , while usual MHD waves may be relegated to the back

burner. The emphasis is on the emergence and propagation of inertial waves. To
simplify, we address this issue in the incompressible context, with\biggl\{ 

\partial tv+ (v \cdot \nabla )v +\nabla p+B\ast \times (\nabla \times B)= 0 ,
\partial tB

\ast +\nabla \times 
\bigl( 
B\ast \times (v - di\nabla \times B)

\bigr) 
+ d2e \nabla \times 

\bigl( 
(\nabla \times v)\times (\nabla \times B)

\bigr) 
= 0 ,

(5.1)

together with (1.15) and

B= (Id - d2e\Delta ) - 1B\ast .(5.2)

Our discussion is guided by the selection of different wave configurations, aimed at
revealing various facets of the analysis. Each time, we follow the same guidelines.
First, we exhibit particular solutions to (1.15)--(5.1)--(5.2). Second, we derive the
corresponding linearized equations (this is an opportunity to come back and com-
plete some aspects of the preceding analysis). Then we study the inertial dispersion
relations thus generated.

This strategy is implemented in different situations which become somewhat more
and more sophisticated. We consider successively the following: constant solutions
(subsection 5.1), Beltrami fields (subsection 5.2), configurations with null points (sub-
section 5.3), a two- dimensional framework (subsection 5.4), and special moving solu-
tions (subsection 5.5).
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EXTENDED MAGNETOHYDRODYNAMICS 4549

5.1. Constant solutions. Of course, constant vector fields like (\=v, \=B
\ast 
)\in \BbbR 3\times \BbbR 3

give rise to solutions. The associated linearized equations are readily identifiable:\biggl\{ 
\partial t \.v+ (\=v \cdot \nabla ) \.v+\nabla \.p+ \=B

\ast \times (\nabla \times \.B) = 0 , \nabla \cdot \.v= 0 ,

\partial t \.B
\ast + (\=v \cdot \nabla ) \.B\ast  - (\=B

\ast \cdot \nabla )( \.v - di\nabla \times \.B) = 0 , \nabla \cdot \.B\ast = 0 ,
(5.3)

together with

\.B = (Id - d2e\Delta ) - 1 \.B\ast .(5.4)

The linear system (5.3) is not symmetric (and not directly symmetrizable), confirming
that the unknowns \.v and \.B\ast are not suitable. Following subsection 2.3, we can
introduce the weighted vorticity \.w := de\nabla \times \.v to get\biggl\{ 

\partial t \.w+ (\=v \cdot \nabla ) \.w= d - 1
e (\=B

\ast \cdot de\nabla )
\bigl( 
de\nabla \times (Id - d2e\Delta ) - 1 \.B\ast \bigr) ,

\partial t \.B
\ast + (\=v \cdot \nabla ) \.B\ast = d - 1

e (\=B
\ast \cdot de\nabla )

\bigl( 
\.v - dde\nabla \times (Id - d2e\Delta ) - 1 \.B\ast \bigr) .(5.5)

The derivatives of \.v (weighted by de) can be deduced from \.w as indicated in Lemma 23.
Observe that the operators which are in factor of d - 1

e in the right-hand side are
uniformly (when de \rightarrow 0) bounded in L2. Thus, we have the following:

-- For \=B
\ast 
= O(de) or if the regime is weakly nonlinear as in (1.12), the source

terms are uniformly bounded on any finite time interval. This is the frame-
work of the present paper.

-- For \=B
\ast 
=O(1), the L2-norm of ( \.w, \.B\ast ) may increase at a rate of d - 1

e . This de-
pends on the structure (antisymmetric or not) of the source term. As already
mentioned, the corresponding effects are connected to singularity formation
[10, 23] or magnetic reconnection [16, 18]. These difficulties are not addressed
here.

In other words, at very high frequencies | \xi | \gtrsim d - 1
e , due to the ellipticity induced

by the constitutive relation, all standard hyperbolic contributions (managing usually
Alfv\'en and magnetosonic waves) act in the right-hand side as zero order terms. If
\=B
\ast 
=O(de), they remain under control. But, for \=B

\ast 
=O(1), they could result (when

de \rightarrow 0) in a very rapid amplification of the L2-norm.
The linear system (5.5) is well-posed in L2. However, its hyperbolic structure

(the left-hand side) is completely reduced, without any influence from de or di. We
just find two decoupled transport equations at the velocity \=v. The constant case is a
point of entry that does not allow us to catch rich phenomena. Still, it is illustrative
of the role of source terms in the inertial regime.

5.2. Beltrami fields. Select some angular wave vector k \in \BbbR 3 whose angular
wavenumber k := | k| is an integer (k \in \BbbN ), as well as some vector Zk \in \BbbR 3 which is
such that k \cdot Zk = 0. With the help of k and Zk, we can construct the oscillatory wave

\scrZ k(x) :=Zk cos (k \cdot x) + k - 1 (Zk \times k) sin (k \cdot x) .

This furnishes an eigenfunction of the curl operator with eigenvalue k, which is called
a Beltrami field. From

\nabla \times \scrZ k = k\scrZ k , \nabla \cdot \scrZ k = 0 , 2 (\scrZ k \cdot \nabla )\scrZ k =\nabla | \scrZ k| 2 , \Delta \scrZ k = - k2\scrZ k ,

we can deduce that (v,B\ast ) = (\scrZ k,\scrZ k) is a stationary solution to (1.15)--(5.1)--(5.2)
with pressure p= - | \scrZ k| 2/2 and B = (1+d2e k

2) - 1\scrZ k. After some calculations, always
with the weighted vorticity \.w := de\nabla \times \.v, we find that
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4550 NICOLAS BESSE AND CHRISTOPHE CHEVERRY\biggl\{ 
\partial t \.w+ (\scrZ k \cdot \nabla ) \.w+ de k (\scrZ k \cdot \nabla ) \.B\ast = \.S iw

v0 ( \.w, \.B\ast ) ,

\partial t \.B
\ast + (1 - di k) (\scrZ k \cdot \nabla ) \.B\ast + de k (\scrZ k \cdot \nabla ) \.w= \.S iB\ast 

v0 ( \.w, \.B\ast ) .
(5.6)

The operators \.S i \star 
v0 are (as suggested by the notation) of order zero. They depend on

de and di, and they show properties similar to those identified in subsection 5.1. For
di = 0, the two quantities \.w\pm \.B\ast satisfy two transport equations (coupled by source
terms). These inertial waves travel along the same characteristics, those generated
by \scrZ k, but with different speeds of propagation (due to the factor 1\pm de k in front of
\scrZ k \cdot \nabla ).

5.3. Null point configurations. The locations where the magnetic field van-
ishes are called null points. Prototypes can (locally) take the form

Bf\ast 
\alpha := t(y,\alpha x,0) , Bs\ast 

\alpha := t
\bigl( 
x,\alpha y, - (\alpha + 1)z

\bigr) 
, \alpha \in \BbbR .(5.7)

The expression (v,B\ast ) with (v,B\ast ) = (0,Bf\ast 
\alpha ) or (v,B\ast ) = (0,Bs\ast 

\alpha ) is a stationary
solution satisfying B=B\ast .
\bullet The case of Bf\ast 

\alpha . First compute

\nabla \times Bf\ast 
\alpha =

\left(  0
0

\alpha  - 1

\right)  , Bf\ast 
\alpha \times (\nabla \times Bf\ast 

\alpha ) = (\alpha  - 1)

\left(  \alpha x
 - y
0

\right)  =
\alpha  - 1

2
\nabla (\alpha x2  - y2) .

It follows that\biggl\{ 
\partial t \.w+ de (\alpha  - 1) \partial z \.B\ast = \.S iw

v0 ( \.w, \.B\ast ) ,

\partial t \.B
\ast  - di (\alpha  - 1) \partial z \.B\ast + de (\alpha  - 1) \partial z \.w= \.S iB\ast 

v0 ( \.w, \.B\ast ) .
(5.8)

The inertial waves move (modulo possibly large source terms) in the vertical direction
(the one of the stationary current density) at the speeds di\pm (d2i +4d2e)

1/2 (\alpha  - 1)/2. In
other words, two-dimensional null points lend themselves to a transport of energy in
the direction orthogonal to the (horizontal) magnetic surfaces. This effect disappears
when the perturbation remains in the horizontal plane or in the particular case \alpha = 1
(when the separatrix angle is \pi /2).
\bullet The case Bs\ast 

\alpha . This situation is even simpler since \partial t( \.w, \.B\ast ) = \.S i
v0 ( \.w,

\.B\ast ).
Large amplitude magnetic fields like in (5.7) usually furnish templates in the

perspective of reconnection models [40]. The problem is to describe what happens
near the origin after perturbation. This would require (this is not done here) one to
measure the impact of the source term \.S i

v, which is presumably of size d - 1
e .

5.4. The two-dimensional case. We can also seek solutions which do not
depend on z and which involve the following form (where B and B\ast are both orthogonal
to v):

v =

\left(  v1(t, x, y)
v2(t, x, y)

0

\right)  , B=

\left(  0
0

b(t, x, y)

\right)  , B\ast =

\left(  0
0

b\ast (t, x, y)

\right)  .(5.9)

Note that there exist two-dimensional solutions of (5.1) which are more general than
(5.9), by including the flux and stream functions (see [18]). With (5.9), the equations
composing (2.11) reduce to the following 2\times 2 nonlinear system:

\biggl\{ 
\partial tw+ v1 \partial xw+ v2 \partial yw+ de (\partial yb\partial xb

\ast  - \partial xb\partial yb
\ast ) = 0 ,

\partial tb
\ast + (v1  - di \partial yb) \partial xb

\ast + (v2 + di \partial xb) \partial yb
\ast + de (\partial yb\partial xw - \partial xb\partial yw)= 0 ,

(5.10)
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EXTENDED MAGNETOHYDRODYNAMICS 4551

together with

\partial xv1 + \partial yv2 = 0 , b= (1 - d2e\Delta x,y)
 - 1 b\ast .(5.11)

For de = 0, we find that b = b\ast , and the system (5.10) reduces to two transport
equations \biggl\{ 

\partial tw+ v1 \partial xw+ v2 \partial yw= 0 ,
\partial tb

\ast + v1 \partial xb
\ast + v2 \partial yb

\ast = 0 .
(5.12)

The Hall effects (coming from di) just disappear (this is quite specific to this config-
uration).

From now on, consider that de > 0. Then the link between b and b\ast is simplified,
making apparent the gain of two derivatives and the role of \partial xb and \partial yb as coeffi-
cients. Moreover, we get simplifications since the source terms are eliminated. Fix
five constants (\=v1, \=v2, \alpha ,\beta , \gamma )\in \BbbR 5 such that  - \=v1\gamma + \=v2\beta = 0. The expressions

\=v = (\=v1, \=v2) , (w,b
\ast 
) := (0, \alpha  - \gamma x+ \beta y) , b= b

\ast 
,(5.13)

give rise to solutions to (5.10) such that \nabla \times \=B
\ast 
= t(\beta ,\gamma ,0) is constant. The linearized

equations of (5.10) along these solutions are given by\left\{   
\partial t \.w+ \=v1 \partial x \.w+ \=v2 \partial y \.w+ de (\beta \partial x \.b

\ast + \gamma \partial y \.b
\ast ) - de (\beta \partial x \.b+ \gamma \partial y \.b) = 0 ,

\partial t \.b
\ast + (\=v1  - di \beta ) \partial x \.b

\ast + (\=v2  - di \gamma ) \partial y \.b
\ast + de (\beta \partial x \.w+ \gamma \partial y \.w)

+di (\beta \partial x \.b+ \gamma \partial y \.b) = 0 ,

(5.14)

where \.b = (1 - d2e\Delta x,y)
 - 1 \.b\ast . In the quasi-linear symmetric presentation (5.14), the

two contributions \beta \partial x \.b
\ast + \gamma \partial y \.b

\ast and \beta \partial x \.w + \gamma \partial y \.w establish a balance, while \partial x \.b
and \partial y \.b are viewed as source terms (of order zero). Given some angular wave vector
k = (k1, k2) \in \BbbR 2 with angular wave number k := | k| \in \BbbR + and given \tau \in \BbbC , we can
seek plane wave solutions of the form

\.w= \.wk ei k1 x+i k2 y+i \tau t, \.b\ast = \.b\ast k ei k1 x+i k2 y+i \tau t .(5.15)

Remark 21 (approximate vs. complete dispersion relation). Neglecting the in-
fluence inside (5.14) of the zero order terms, we find the following two approximate
dispersion relations:

\~\tau \pm (k) + \=v \cdot k+
1

2
\kappa \pm (\beta k1 + \gamma k2) = 0 , \kappa \pm :=

1

2

\Bigl( 
di \pm 

\sqrt{} 
d2i + 4d2e

\Bigr) 
,(5.16)

which are inherited from the symmetric form. As can be expected, the functions \~\tau \pm 
are homogeneous of degree 1 with respect to k.

Now observe that \beta \partial x \.b
\ast +\gamma \partial y \.b

\ast  - \beta \partial x \.b - \gamma \partial y \.b= - d2e \Delta x,y (1 - d2e\Delta x,y)
 - 1 (\beta \partial x \.b

\ast +
\gamma \partial y \.b

\ast ). Thus, after substitution of (5.15) inside (5.14), we get the condition det\bigl( 
\tau Id2\times 2 +A(k)

\bigr) 
= 0, where the matrix A(k) is defined by

A(k) := \=v \cdot k Id2\times 2 + (\beta k1 + \gamma k2)

\biggl( 
0 +de g(k)
de  - di g(k)

\biggr) 
, g(k) :=

d2e k2

1 + d2e k
2
.

We find two distinct real eigenvalues giving rise to the two complete dispersion rela-
tions:

\tau \pm (k) + \=v \cdot k+
1

2
(\beta k1 + \gamma k2)

\Bigl[ 
di g(k)\pm 

\sqrt{} 
d2i g(k)

2 + 4d2e g(k)
\Bigr] 
= 0 .(5.17)

This means that the addition of the zero order terms does not destroy the hyper-
bolic properties. The 2 \times 2 system (5.14) is hyperbolic, with Fourier multipliers as
coefficients:
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4552 NICOLAS BESSE AND CHRISTOPHE CHEVERRY

-- For k orthogonal to \nabla \times \=B
\ast 
, we just find \~\tau \pm (k) = \tau \pm (k) = - \=v \cdot k.

-- For de > 0, we must incorporate supplementary corrections on both \~\tau \pm and
\tau \pm that characterize the propagation of inertial waves. Moreover, at the level
of \tau \pm , we observe dispersive effects encoded in the (nonconstant) behavior of
g. On the other hand, for k \gg d - 1

e , we get g(k) \sim 1. As a consequence, the
asymptotic description of \tau \pm (k) gives way to \~\tau \pm (k).

Remark 22 (on the determination of the complete dispersion relations). Keep in
mind that extra dispersive effects may be induced by the source terms which have
been skipped in this subsection. This is here illustrated by the difference between
\~\tau \pm and \tau \pm . The eigenvalues \lambda \pm of (2.19) only provide information on the (maximal
possible) homogeneous behavior (of order 1) inherited by the speeds of propagation
(for conveniently polarized waves).

5.5. Moving solutions. Consider that di = 1 and de \ll 1. Let B0 be a fixed
constant magnetic field. In [4, 3], given k\in \BbbR 3, the authors seek plane wave solutions
having the following form (where, on the condition that B0 = 0, B and v are parallel):

B =B0 + \mu \pm 
k v\pm k eik\cdot x+i\mu \pm 

\bfk (B0\cdot k) t, v= v\pm k eik\cdot x+i\mu \pm 
\bfk (B0\cdot k) t, v\pm k \in \BbbR 3.

(5.18)

By adjusting the value of \mu \pm 
k adequately, they show that such solutions do exist.

Observe that B = B0 + \mu \pm 
k v, so that (\nabla \times B) \times (\nabla \times v) = 0. This means that the

choice (5.18) has the effect of killing some nonlinearities and in fact, remarkably,
all nonlinearities. The choice (5.18) is to some extent the opposite of (5.9). This
polarization eliminates the terms which are emphasized at the level of (2.11) or (5.10),
those with de in factor. The dynamics induced by (5.18) have nothing to do with
inertial waves. Rather, they are tied to some extension of Alfv\'en waves.

For k= k ez with ez =
t(0,0,1) and where k= | k| \in \BbbR stands again for the angular

wavenumber, we get a special type of waves with associated dispersion relation

\omega \pm 
k = - \mu \pm 

k (B0 \cdot k) =
 - k

1 + d2e k
2

\Biggl[ 
 - k

2
\pm 
\sqrt{} 

k2

4
+ (1 + d2e k

2)

\Biggr] 
(B0 \cdot ez) ,(5.19)

which clearly exhibits dispersive properties. In section 3.2 of [3], some comments are
given about (5.19), which corresponds to a generalization of the dispersion relation for
shear Alfv\'en waves in ideal MHD. Since the \omega \pm 

k remain bounded, the role of electron
inertia in this case is to impose a lower and an upper bound on the time frequencies
attainable. In contrast, in the Hall framework, we get \omega  - 

k = k2 (B0 \cdot ez), which rapidly
diverges as the spatial wavenumber k tends to infinity. This means that the electron
inertia has the effect on \mu  - 

k to cure singular behaviors at high wave numbers in Hall
MHD.

Appendix A. In Appendix A.1, we list some useful identities implying \nabla \times . In
Appendix A.2, we recall elliptic L2-estimates concerning the div-curl system. These
estimates have been exploited to control the derivatives of v in terms of \nabla \times v and
\nabla \cdot v.

A.1. Identities involving the curl operator. Retain that

\nabla \times (\nabla \times v) =\nabla (\nabla \cdot v) - \Delta v .(A.1)

We need to know that

\nabla \times (F \times G) =
\bigl( 
(\nabla \cdot G) +G \cdot \nabla 

\bigr) 
F  - 

\bigl( 
(\nabla \cdot F ) + F \cdot \nabla 

\bigr) 
G.(A.2)
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EXTENDED MAGNETOHYDRODYNAMICS 4553

Recall also that

\nabla \times (F \cdot \nabla G) = (F \cdot \nabla )\nabla \times G - ((\nabla \times G) \cdot \nabla )F

+(\nabla \times G)(\nabla \cdot F ) +

3\sum 
i=1

\nabla Fi \times \nabla Gi .
(A.3)

A.2. Elliptic estimates for the div-curl system. Consider in \BbbR 3 the system\biggl\{ 
\nabla \times v=w ,
\nabla \cdot v= g ,

(A.4)

where w and g are given data in L2, whereas v is the unknown. From (A.1), we get
that

3\sum 
i,j

\int 
\BbbR 3

| \partial ivj | 2 dx=

\int 
\BbbR 3

\bigl( 
| \nabla \cdot v| 2 + | \nabla \times v| 2

\bigr) 
dx=

\int 
\BbbR 3

\bigl( 
| w| 2 + g2

\bigr) 
dx .

The derivatives of v in L2 are therefore controlled by the L2-norms of w and g.
Using the Poincar\'e--Sobolev inequality (i.e., \| v\| L2(\BbbR 3) \leq C\| \nabla v\| L2(\BbbR 3)), we also obtain
control of the L2-norm of v and hence its \scrH 1-norm. Below, we formalize this well-
known fact [43]. For the sake of completeness, we also give a more explicit proof of
it.

A.2.1. Link between the vorticity and the derivatives of a divergence-
free velocity. We start by manipulating solenoidal vector fields belonging to \scrD s.
The link between w and v is then achieved through the Biot--Savart law:

v=\nabla \times ( - \Delta ) - 1w .(A.5)

Lemma 23 (continuity properties when passing from\nabla \times v to \partial iv). Given w \in \scrD s,
there exists a unique solenoidal vector field v such that w=\nabla \times v in the distributional
sense. Moreover, for all i\in \{ 1,2,3\} , the linear operator \scrM i

i :\scrD s \rightarrow \scrD s which sends w
to \partial iv (with v as above) may be defined as a bounded matrix Fourier multiplier. It is
therefore continuous for all s\in \BbbR .

Proof. Fix any w \in \scrD s. By the Poincar\'e lemma, we can find some v such that
w = \nabla \times v in the distributional sense. If we impose, moreover, \nabla \cdot v = 0, on the
Fourier side, we have to deal with the explicit relation \^v=\scrF v= i | \xi |  - 2\scrF w\times \xi , which
furnishes

\widehat \partial iv=M i
i (\xi )\scrF w , M i

i (\xi ) := - \xi i
| \xi | 2

\left(  0 \xi 3  - \xi 2
 - \xi 3 0 \xi 1
\xi 2  - \xi 1 0

\right)  .

It is clear that the matrix-valued function M i
i is bounded on \BbbR 3 \setminus \{ 0\} .

A.2.2. Link between (\bfitw ,\bfitg ) and the derivatives of \bfitv . The compressible
version of Lemma 23 is the following.

Lemma 24 (continuity properties when passing from the couple (\nabla \times v,\nabla \cdot v) to
\partial iv). Let g \in \scrH s(\BbbR 3;\BbbR ) and w \in \scrD s. There exists a unique v such that (\nabla \times v,\nabla \cdot v) =
(g,w) in the distributional sense. Moreover, for all i \in \{ 1,2,3\} , the linear operator
\scrM c

i :\scrH s \times \scrH s \rightarrow \scrH s which sends (g,w) to \partial iv (with v as above) may be defined as a
bounded matrix Fourier multiplier. It is therefore continuous.
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Proof. By construction, we have \scrM c
i (g,w) =\scrF  - 1

\bigl( 
 - \xi i (\^g \xi  - \xi \times \^w)/| \xi | 2

\bigr) 
, which

is sufficient to conclude.
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